Journal list menu
Lake nutrient stoichiometry is less predictable than nutrient concentrations at regional and sub-continental scales
Corresponding Author
Sarah M. Collins
Department of Fisheries and Wildlife, Michigan State University, 13 Natural Resources, East Lansing, Michigan, 48824 USA
Center for Limnology, University of Wisconsin, 680 North Park Street, Madison, Wisconsin, 53706 USA
E-mail: [email protected]Search for more papers by this authorSamantha K. Oliver
Center for Limnology, University of Wisconsin, 680 North Park Street, Madison, Wisconsin, 53706 USA
Search for more papers by this authorJean-Francois Lapierre
Département de Sciences Biologiques, Université de Montreal, Pavillon Marie-Victorin, CP 6128, succursale Centre-ville, Montréal, Quebec, H3C 3J7 Canada
Search for more papers by this authorEmily H. Stanley
Center for Limnology, University of Wisconsin, 680 North Park Street, Madison, Wisconsin, 53706 USA
Search for more papers by this authorJohn R. Jones
School of Natural Resources, University of Missouri, 302 Anheuser-Busch Natural Resources Building, Columbia, Missouri, 65211 USA
Search for more papers by this authorTyler Wagner
U.S. Geological Survey, Pennsylvania Cooperative Fish and Wildlife Unit, The Pennsylvania State University, 402 Forest Resources Building, University Park, Pennsylvania, 16802 USA
Search for more papers by this authorPatricia A. Soranno
Department of Fisheries and Wildlife, Michigan State University, 13 Natural Resources, East Lansing, Michigan, 48824 USA
Search for more papers by this authorCorresponding Author
Sarah M. Collins
Department of Fisheries and Wildlife, Michigan State University, 13 Natural Resources, East Lansing, Michigan, 48824 USA
Center for Limnology, University of Wisconsin, 680 North Park Street, Madison, Wisconsin, 53706 USA
E-mail: [email protected]Search for more papers by this authorSamantha K. Oliver
Center for Limnology, University of Wisconsin, 680 North Park Street, Madison, Wisconsin, 53706 USA
Search for more papers by this authorJean-Francois Lapierre
Département de Sciences Biologiques, Université de Montreal, Pavillon Marie-Victorin, CP 6128, succursale Centre-ville, Montréal, Quebec, H3C 3J7 Canada
Search for more papers by this authorEmily H. Stanley
Center for Limnology, University of Wisconsin, 680 North Park Street, Madison, Wisconsin, 53706 USA
Search for more papers by this authorJohn R. Jones
School of Natural Resources, University of Missouri, 302 Anheuser-Busch Natural Resources Building, Columbia, Missouri, 65211 USA
Search for more papers by this authorTyler Wagner
U.S. Geological Survey, Pennsylvania Cooperative Fish and Wildlife Unit, The Pennsylvania State University, 402 Forest Resources Building, University Park, Pennsylvania, 16802 USA
Search for more papers by this authorPatricia A. Soranno
Department of Fisheries and Wildlife, Michigan State University, 13 Natural Resources, East Lansing, Michigan, 48824 USA
Search for more papers by this authorAbstract
Production in many ecosystems is co-limited by multiple elements. While a known suite of drivers associated with nutrient sources, nutrient transport, and internal processing controls concentrations of phosphorus (P) and nitrogen (N) in lakes, much less is known about whether the drivers of single nutrient concentrations can also explain spatial or temporal variation in lake N:P stoichiometry. Predicting stoichiometry might be more complex than predicting concentrations of individual elements because some drivers have similar relationships with N and P, leading to a weak relationship with their ratio. Further, the dominant controls on elemental concentrations likely vary across regions, resulting in context dependent relationships between drivers, lake nutrients and their ratios. Here, we examine whether known drivers of N and P concentrations can explain variation in N:P stoichiometry, and whether explaining variation in stoichiometry differs across regions. We examined drivers of N:P in ~2,700 lakes at a sub-continental scale and two large regions nested within the sub-continental study area that have contrasting ecological context, including differences in the dominant type of land cover (agriculture vs. forest). At the sub-continental scale, lake nutrient concentrations were correlated with nutrient loading and lake internal processing, but stoichiometry was only weakly correlated to drivers of lake nutrients. At the regional scale, drivers that explained variation in nutrients and stoichiometry differed between regions. In the Midwestern U.S. region, dominated by agricultural land use, lake depth and the percentage of row crop agriculture were strong predictors of stoichiometry because only phosphorus was related to lake depth and only nitrogen was related to the percentage of row crop agriculture. In contrast, all drivers were related to N and P in similar ways in the Northeastern U.S. region, leading to weak relationships between drivers and stoichiometry. Our results suggest ecological context mediates controls on lake nutrients and stoichiometry. Predicting stoichiometry was generally more difficult than predicting nutrient concentrations, but human activity may decouple N and P, leading to better prediction of N:P stoichiometry in regions with high anthropogenic activity.
Literature Cited
- Abell, J. M., D. Özkundakci, D. P. Hamilton, and J. R. Jones. 2012. Latitudinal variation in nutrient stoichiometry and chlorophyll-nutrient relationships in lakes: A global study. Fundamental and Applied Limnology/Archiv für Hydrobiologie 181: 1–14.
- Arbuckle, K. E., and J. A. Downing. 2001. The influence of watershed land use on lake N: P in a predominantly agricultural landscape. Limnology and Oceanography 46: 970–975.
- Bachmann, R. W. 1984. Calculation of phosphorus and nitrogen loadings to natural and artificial lakes. Verhandlungen—Internationale Vereinigung für Theoretische und Angewandte Limnologie 22: 239–243.
- Bergström, A.-K., C. Faithfull, D. Karlsson, and J. Karlsson. 2013. Nitrogen deposition and warming—effects on phytoplankton nutrient limitation in subarctic lakes. Global Change Biology 19: 2557–2568.
- Booth, M. S., J. M. Stark, and E. Rastetter. 2005. Controls on nitrogen cycling in terrestrial ecosystems: a synthetic analysis of literature data. Ecological Monographs 75: 139–157.
- Brett, M. T., and M. M. Benjamin. 2008. A review and reassessment of lake phosphorus retention and the nutrient loading concept. Freshwater Biology 53: 194–211.
- Carpenter, S. R., N. F. Caraco, D. L. Correll, R. W. Howarth, A. N. Sharpley, and V. H. Smith. 1998. Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecological Applications 8: 559–568.
- Carrascal, L. M., I. Galván, and O. Gordo. 2009. Partial least squares regression as an alternative to current regression methods used in ecology. Oikos 118: 681–690.
- Chen, M., G. Zeng, J. Zhang, P. Xu, A. Chen, and L. Lu. 2015. Global landscape of total organic carbon, nitrogen and phosphorus in lake water. Nature Publishing Group 5: 1–7.
- Cheruvelil, K. S., P. A. Soranno, K. E. Webster, and M. T. Bremigan. 2013. Multi-scaled drivers of ecosystem state: quantifying the importance of the regional spatial scale. Ecological Applications 23: 1603–1618.
- Conley, D. J., H. W. Paerl, R. W. Howarth, D. F. Boesch, S. P. Seitzinger, K. E. Havens, C. Lancelot, and G. E. Likens. 2009. Ecology: controlling eutrophication: nitrogen and phosphorus. Science 323: 1014–1015.
- Crowley, K. F., et al. 2012. Do nutrient limitation patterns shift from nitrogen toward phosphorus with increasing nitrogen deposition across the Northeastern United States? Ecosystems 15: 940–957.
- Davidson, K., R. J. Gowen, P. Tett, E. Bresnan, P. J. Harrison, A. McKinney, S. Milligan, D. K. Mills, J. Silke, and A.-M. Crooks. 2012. Harmful algal blooms: How strong is the evidence that nutrient ratios and forms influence their occurrence? Estuarine, Coastal and Shelf Science 115: 399–413.
- Dessborn, L., R. Hessel, and J. Elmberg. 2016. Geese as vectors of nitrogen and phosphorus to freshwater systems. Inland Waters 6: 111–122.
- Dibble, E. D., and K. Kovalenko. 2009. Ecological impact of grass carp: A review of the available data. Journal of Aquatic Plant Management 47: 1–15.
- Dijkstra, F. A., E. Pendall, J. A. Morgan, D. M. Blumenthal, Y. Carrillo, D. R. LeCain, R. F. Follett, and D. G. Williams. 2012. Climate change alters stoichiometry of phosphorus and nitrogen in a semiarid grassland. New Phytologist 196: 807–815.
- Du, E., W. de Vries, J. N. Galloway, X. Hu, and J. Fang. 2014. Changes in wet nitrogen deposition in the United States between 1985 and 2012. Environmental Research Letters 9: 095004.
- Edmondson, W. T. 1961. Changes in Lake Washington following an increase in the nutrient income. Verhandlungen – Internationale Vereinigung für Theoretische und Angewandte Limnologie 16: 1–9.
- Elser, J. J., M. E. S. Bracken, E. E. Cleland, D. S. Gruner, W. S. Harpole, H. Hillebrand, J. T. Ngai, E. W. Seabloom, J. B. Shurin, and J. E. Smith. 2007. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology Letters 10: 1135–1142.
- Elser, J. J., T. Andersen, J. S. Baron, A. K. Bergstrom, M. Jansson, M. Kyle, K. R. Nydick, L. Steger, and D. O. Hessen. 2009. Shifts in lake N: P stoichiometry and nutrient limitation driven by atmospheric nitrogen deposition. Science 326: 835–837.
- Elser, J. J., A. L. Peace, M. Kyle, M. Wojewodzic, M. L. McCrackin, T. Andersen, and D. O. Hessen. 2010. Atmospheric nitrogen deposition is associated with elevated phosphorus limitation of lake zooplankton. Ecology Letters 13: 1256–1261.
- Fergus, C. E., P. A. Soranno, K. S. Cheruvelil, and M. T. Bremigan. 2011. Multiscale landscape and wetland drivers of lake total phosphorus and water color. Limnology and Oceanography 56: 2127–2146.
- Fraterrigo, J. M., and J. A. Downing. 2008. The influence of land use on lake nutrients varies with watershed transport capacity. Ecosystems 11: 1021–1034.
- Frost, P. C., W. F. Cross, and J. P. Benstead. 2005. Ecological stoichiometry in freshwater benthic ecosystems: an introduction. Freshwater Biology 50: 1781–1785.
- Grantz, E. M., B. E. Haggard, and J. T. Scott. 2014. Stoichiometric imbalance in rates of nitrogen and phosphorus retention, storage, and recycling can perpetuate nitrogen deficiency in highly-productive reservoirs. Limnology and Oceanography 59: 2203–2216.
- Hall, S. R. 2004. Stoichiometrically explicit competition between grazers: Species replacement, coexistence, and priority effects along resource supply gradients. American Naturalist 164: 157–172.
- Harpole, W. S., et al. 2011. Nutrient co-limitation of primary producer communities. Ecology Letters 14: 852–862.
- Harrison, J. A., R. J. Maranger, R. B. Alexander, A. E. Giblin, P.-A. Jacinthe, E. Mayorga, S. P. Seitzinger, D. J. Sobota, and W. M. Wollheim. 2009. The regional and global significance of nitrogen removal in lakes and reservoirs. Biogeochemistry 93: 143–157.
- He, M., F. A. Dijkstra, K. Zhang, X. Li, H. Tan, Y. Gao, and G. Li. 2014. Leaf nitrogen and phosphorus of temperate desert plants in response to climate and soil nutrient availability. Scientific Reports 4: 6932–6937.
- Heathcote, A. J., P. A. del Giorgio, and Y. T. Prairie. 2015. Predicting bathymetric features of lakes from the topography of their surrounding landscape. Canadian Journal of Fisheries and Aquatic Sciences 72: 643–650.
- Hecky, R. E., R. E. Smith, D. R. Barton, S. J. Guildford, W. D. Taylor, M. N. Charlton, and T. Howell. 2004. The nearshore phosphorus shunt: a consequence of ecosystem engineering by dreissenids in the Laurentian Great Lakes. Canadian Journal of Fisheries and Aquatic Sciences 61: 1285–1293.
- Heino, J., M. Grönroos, J. Soininen, R. Virtanen, and T. Muotka. 2011. Context dependency and metacommunity structuring in boreal headwater streams. Oikos 121: 537–544.
- Hessen, D. O., T. Andersen, S. Larsen, B. L. Skjelkvale, and H. A. de Wit. 2009. Nitrogen deposition, catchment productivity, and climate as determinants of lake stoichiometry. Limnology and Oceanography 54: 1–9.
- Hollister, J. W., W. B. Milstead, and A. M. Urrutia. 2011. Predicting maximum lake depth from surrounding topography. PLoS ONE 6: e25764.
- Jarvie, H. P., A. N. Sharpley, B. Spears, A. R. Buda, L. May, and P. J. A. Kleinman. 2013. Water quality remediation faces unprecedented challenges from “legacy phosphorus.” Environmental Science & Technology 47: 8997–8998.
- Jobbagy, E. G., and R. B. Jackson. 2001. The distribution of soil nutrients with depth: Global patterns and the imprint of plants. Biogeochemistry 53: 51–77.
- Knoll, L., E. Hagenbuch, M. Stevens, M. Vanni, W. Renwick, J. Denlinger, R. S. Hale, and M. Gonzalez. 2015. Predicting eutrophication status in reservoirs at large spatial scales using landscape and morphometric variables. Inland Waters 5: 203–214.
- Kraemer, B. M., et al. 2015. Morphometry and average temperature affect lake stratification responses to climate change. Geophysical Research Letters 42: 4981–4988.
- Kronvang, B., E. Jeppesen, D. J. Conley, M. Søndergaard, S. E. Larsen, N. B. Ovesen, and J. Carstensen. 2005. Nutrient pressures and ecological responses to nutrient loading reductions in Danish streams, lakes and coastal waters. Journal of Hydrology 304: 274–288.
- Kronvang, B., H. E. Andersen, C. Børgesen, T. Dalgaard, S. E. Larsen, J. Bøgestrand, and G. Blicher-Mathiasen. 2008. Effects of policy measures implemented in Denmark on nitrogen pollution of the aquatic environment. Environmental Science & Policy 11: 144–152.
- Liu, Y., P. Gao, L. Zhang, X. Niu, and B. Wang. 2016. Spatial heterogeneity distribution of soil total nitrogen and total phosphorus in the Yaoxiang watershed in a hilly area of northern China based on geographic information system and geostatistics. Ecology and Evolution 6: 6807–6816.
- Lopez, R. D., M. S. Nash, D. T. Heggem, and D. W. Ebert. 2008. Watershed vulnerability predictions for the Ozarks using landscape models. Journal of Environmental Quality 37: 1769–1780.
- Magnuson, J. J., et al. 1997. Potential effects of climate changes on aquatic systems: Laurentian great lakes and precambrian shield region. Hydrological Processes 11: 825–871.
- Martyniuk, N., B. Modenutti, and E. Balseiro. 2016. Forest structure affects the stoichiometry of periphyton primary producers in mountain streams of Northern Patagonia. Ecosystems 19: 1225–1239.
- Mehmood, T., K. H. Liland, L. Snipen, and S. Sæbø. 2012. A review of variable selection methods in partial least squares regression. Chemometrics and Intelligent Laboratory Systems 118: 62–69.
- Michalak, A. M., et al. 2013. Record-setting algal bloom in Lake Erie caused by agricultural and meteorological trends consistent with expected future conditions. Proceedings of the National Academy of Sciences USA 110: 6448–6452.
- Monk, W. A., N. M. Wilbur, R. A. Curry, R. Gagnon, and R. N. Faux. 2013. Linking landscape variables to cold water refugia in rivers. Journal of Environmental Management 118: 170–176.
- Mooij, W. M., et al. 2005. The impact of climate change on lakes in the Netherlands: a review. Aquatic Ecology 39: 381–400.
- Oliver, S. K., P. A. Soranno, C. E. Fergus, T. Wagner, L. A. Winslow, C. E. Scott, K. E. Webster, J. A. Downing, and E. H. Stanley. In revision. Prediction of lake depth across a 17-state region in the United States. Inland Waters 6: 314–324.
- Paerl, H. W., J. T. Scott, M. J. McCarthy, S. E. Newell, W. S. Gardner, K. E. Havens, D. K. Hoffman, S. W. Wilhelm, and W. A. Wurtsbaugh. 2016. It takes two to tango: when and where dual nutrient (N & P) reductions are needed to protect lakes and downstream ecosystems. Environmental Science & Technology 50: 10805–10813.
- Peñuelas, J., J. Sardans, A. Rivas-Ubach, and I. A. Janssens. 2011. The human-induced imbalance between C, N and P in Earth's life system. Global Change Biology 18: 3–6.
- Peñuelas, J., et al. 2013. Human-induced nitrogen-phosphorus imbalances alter natural and managed ecosystems across the globe. Nature Communications 4: 1–10.
- Post, D. M., J. P. Taylor, J. F. Kitchell, M. H. Olson, D. E. Schindler, and B. W. Herwig. 1998. The role of migratory waterfowl as nutrient vectors in a managed wetland. Conservation Biology 12: 910–920.
- Powers, S. M., D. M. Robertson, and E. H. Stanley. 2014. Effects of lakes and reservoirs on annual river nitrogen, phosphorus, and sediment export in agricultural and forested landscapes. Hydrological Processes 28: 5919–5937.
- Powers, S. M., et al. 2016. Long-term accumulation and transport of anthropogenic phosphorus in three river basins. Nature Geoscience 9: 353–356.
- Poxleitner, M., G. Trommer, P. Lorenz, and H. Stibor. 2016. The effect of increased nitrogen load on phytoplankton in a phosphorus-limited lake. Freshwater Biology 61: 1966–1980.
- R Core Team. 2016. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/
- Read, E. K., et al. 2015. The importance of lake-specific characteristics for water quality across the continental United States. Ecological Applications 25: 943–955.
- Ricciardi, A., M. F. Hoopes, M. P. Marchetti, and J. L. Lockwood. 2013. Progress toward understanding the ecological impacts of nonnative species. Ecological Monographs 83: 263–282.
- Sanchez, G. 2012. plsdepot: Partial Least Squares (PLS) Data Analysis Methods. R package version 0.1.17. http://CRAN.R-project.org/package=plsdepot
- Sardans, J., A. Rivas-Ubach, and J. Peñuelas. 2011. The elemental stoichiometry of aquatic and terrestrial ecosystems and its relationships with organismic lifestyle and ecosystem structure and function: a review and perspectives. Biogeochemistry 111: 1–39.
- Seitzinger, S., J. A. Harrison, J. K. Bohlke, A. F. Bouwman, R. Lowrance, B. Peterson, C. Tobias, and G. Van Drecht. 2006. Denitrification across landscapes and waterscapes: a synthesis. Ecological Applications 16: 2064–2090.
- Smith, V. H. 2003. Eutrophication of freshwater and coastal marine ecosystems. Environmental Science Pollution Research 10: 126–139.
- Soranno, P. A., et al. 2015a. Building a multi-scaled geospatial temporal ecology database from disparate data sources: fostering open science and data reuse. GigaScience 4: 1–15.
- Soranno, P. A., K. S. Cheruvelil, T. Wagner, K. E. Webster, and M. T. Bremigan. 2015b. Effects of land use on lake nutrients: The importance of scale, hydrologic connectivity, and region. PLoS ONE 10: e0135454.
- Sterner, R. W., and J. J. Elser. 2002. Ecological stoichiometry: the biology of elements from molecules to the biosphere. Princeton University Press, Princeton, New Jersey, USA.
- Subalusky, A. L., C. L. Dutton, E. J. Rosi-Marshall, and D. M. Post. 2015. The hippopotamus conveyor belt: vectors of carbon and nutrients from terrestrial grasslands to aquatic systems in sub-Saharan Africa. Freshwater Biology 60: 512–525.
- Taranu, Z. E., and I. Gregory-Eaves. 2008. Quantifying relationships among phosphorus, agriculture, and lake depth at an inter-regional scale. Ecosystems 11: 715–725.
- Tilman, D., S. S. Kilham, and P. Kilham. 1982. Phytoplankton community ecology: The role of limiting nutrients. Annual Review of Ecology and Systematics 13: 349–372.
10.2307/1939377 Google Scholar
- Torres, L. E., and M. J. Vanni. 2007. Stoichiometry of nutrient excretion by fish: interspecific variation in a hypereutrophic lake. Oikos 116: 259–270.
- Van Meter, K. J., and N. B. Basu. 2015. Catchment legacies and time lags: A parsimonious watershed model to predict the effects of legacy storage on nitrogen export. PLoS ONE 10: e0125971.
- Vanni, M. J., W. H. Renwick, A. M. Bowling, M. J. Horgan, and A. D. Christian. 2011. Nutrient stoichiometry of linked catchment-lake systems along a gradient of land use. Freshwater Biology 56: 791–811.
- Vollenweider, R. A. 1975. Input-output models with special reference to the phosphorus loading concept in limnology. Zielsetzungen des Gewassershutzes 37: 53–84.
- Whitehead, P. G., and J. Crossman. 2012. Macronutrient cycles and climate change: Key science areas and an international perspective. Science of the Total Environment 434: 13–17.
- Wilson, H. F., and M. A. Xenopoulos. 2010. Nutrient recycling by fish in streams along a gradient of agricultural land use. Global Change Biology 17: 130–139.
- Yan, Z., W. Han, J. Peñuelas, J. Sardans, J. J. Elser, E. Du, P. B. Reich, and J. Fang. 2016. Phosphorus accumulates faster than nitrogen globally in freshwater ecosystems under anthropogenic impacts. Ecology Letters 19: 1237–1246.