Journal list menu
Environment shapes the spatial organization of tree diversity in fragmented forests across a human-modified landscape
Corresponding Author
Meghna Krishnadas
Laboratory for Conservation of Endangered Species, CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Habshiguda, Hyderabad, Telangana, 500007 India
E-mail: [email protected]
Search for more papers by this authorAnand M. Osuri
Nature Conservation Foundation, 1311, “Amritha”, 12th Main, Vijayanagar 1st Stage, Mysore, 570017 India
Search for more papers by this authorCorresponding Author
Meghna Krishnadas
Laboratory for Conservation of Endangered Species, CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Habshiguda, Hyderabad, Telangana, 500007 India
E-mail: [email protected]
Search for more papers by this authorAnand M. Osuri
Nature Conservation Foundation, 1311, “Amritha”, 12th Main, Vijayanagar 1st Stage, Mysore, 570017 India
Search for more papers by this authorAbstract
Biodiversity patterns are shaped by the combination of dispersal, environment, and stochasticity, but how the influence of these drivers changes in fragmented habitats remains poorly understood. We examined patterns and relationships among total (γ) and site-level (α) diversity, and site-to-site variation in composition (β-diversity) of tree communities in structurally contiguous and fragmented tropical rainforests within a human-modified landscape in India's Western Ghats. First, for the entire landscape, we assessed the extent to which habitat type (fragment or contiguous forest), space and environment explained variation in α-diversity and composition. Next, within fragments and contiguous forest, we assessed the relative contribution of spatial proximity, environmental similarity, and their joint effects in explaining β-diversity. We repeated these assessments with β-diversity values corrected for the confounding effects of α- and γ-diversity using null models (β-deviation). Lower γ-diversity of fragments resulted from both lower α- and β-diversity compared to contiguous forests. However, β-deviation did not differ between contiguous forests and fragments. Fragmented and contiguous forest clearly diverged in floristic composition, which was attributable to β-diversity being driven by differences in elevation and MAP. Within fragmented forest, neither space nor environment explained β-diversity, but β-deviation increased with greater elevational differences. In contiguous forests by comparison, environment alone (mainly elevation) explained the most variation in β-diversity and β-deviation of both species' occurrences and abundances. Spatial gradients in environmental conditions played a larger role than dispersal limitation in shaping diversity and composition of tree communities across forest fragments. Thus, location of remnant patches at different elevations was a key factor underlying site-to-site variability in species abundances across fragments. Understanding the environmental characteristics of remnant forests in human-modified landscapes, combined with knowledge of species–environment relationships across different functional groups, would therefore be important considerations for management and restoration planning in human-modified landscapes.
Open Research
Data Availability
Data available from the Dryad Digital Repository http://dx.doi.org/10.5061/dryad.7s7r1 (Osuri and Sankaran 2016b). Code used in this analysis is provided in Zenodo: https://doi.org/10.5281/zenodo.4107871.
Supporting Information
Filename | Description |
---|---|
eap2244-sup-0001-AppendixS1.pdfPDF document, 4.7 MB | Appendix S1 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
Literature Cited
- Anderson, M. J., et al. 2011. Navigating the multiple meanings of β diversity: a roadmap for the practicing ecologist. Ecology Letters 14: 19–28.
- Anderson, M. J., and D. C. I. Walsh. 2013. PERMANOVA, ANOSIM, and the Mantel test in the face of heterogeneous dispersions: What null hypothesis are you testing? Ecological Monographs 83: 557–574.
- Anonymous 1998. Karnataka soils. National Bureau of Soil Survey and Land Use Planning, Nagpur, India.
- Arroyo-Rodríguez, V., F. P. L. Melo, M. Martínez-Ramos, F. Bongers, R. L. Chazdon, J. A. Meave, N. Norden, B. A. Santos, I. R. Leal, and M. Tabarelli. 2017. Multiple successional pathways in human-modified tropical landscapes: new insights from forest succession, forest fragmentation and landscape ecology research. Biological Reviews 92: 326–340.
- Arroyo-Rodríguez, V., M. Rös, F. Escobar, F. P. L. Melo, B. A. Santos, M. Tabarelli, and R. Chazdon. 2013. Plant β-diversity in fragmented rain forests: testing floristic homogenization and differentiation hypotheses. Journal of Ecology 101: 1449–1458.
- Asbjornsen, H., M. S. Ashton, D. J. Vogt, and S. Palacios. 2004. Effects of habitat fragmentation on the buffering capacity of edge environments in a seasonally dry tropical oak forest ecosystem in Oaxaca, Mexico. Agriculture, Ecosystems & Environment 103: 481–495.
- Bagchi, R., V. Swamy, J. P. Latorre Farfan, J. Terborgh, C. I. A. Vela, N. C. A. Pitman, and W. G. Sanchez. 2018. Defaunation increases the spatial clustering of lowland Western Amazonian tree communities. Journal of Ecology 106: 1470–1482.
- Bannar-Martin, K. H., et al. 2018. Integrating community assembly and biodiversity to better understand ecosystem function: the Community Assembly and the Functioning of Ecosystems (CAFE) approach. Ecology Letters 21: 167–180.
- Baselga, A. 2013. Multiple site dissimilarity quantifies compositional heterogeneity among several sites, while average pairwise dissimilarity may be misleading. Ecography 36: 124–128.
- Batáry, P., A. Báldi, D. Kleijn, and T. Tscharntke. 2011. Landscape-moderated biodiversity effects of agri-environmental management: a meta-analysis. Proceedings of the Royal Society B 278: 1894–1902.
- Beckman, N. G., and H. C. Muller-Landau. 2007. Differential effects of hunting on pre-dispersal seed predation and primary and secondary seed removal of two neotropical tree species. Biotropica 39: 328–339.
- Benchimol, M., and C. A. Peres. 2015. Edge-mediated compositional and functional decay of tree assemblages in Amazonian forest islands after 26 years of isolation. Journal of Ecology 103: 408–420.
- Benitez-Malvido, J., and A. Lemus-Albor. 2005. The seedling community of tropical rainforest edges and its interaction with herbivores and pathogens. Biotropica 37: 301–313.
- Benitez-Malvido, J., and M. Martinez-Ramos. 2003. Impact of forest fragmentation on understory plant species richness in Amazonia. Conservation Biology 17: 389–400.
- Blanchet, F. G., P. Legendre, and D. Borcard. 2008. Forward selection of explanatory variables. Ecology 89: 2623–2632.
- Borcard, D., P. Legendre, C. Avois-Jacquet, and H. Tuomisto. 2004. Dissecting the spatial structure of ecological data at multiple scales. Ecology 85: 1826–1832.
- Brudvig, L. A., R. S. Barak, J. T. Bauer, T. T. Caughlin, D. C. Laughlin, L. Larios, J. W. Matthews, K. L. Stuble, N. E. Turley, and C. R. Zirbel. 2017. Interpreting variation to advance predictive restoration science. Journal of Applied Ecology 54: 1018–1027.
- Chao, A., K. H. Ma, T. C. Hsieh, and C.-H. Chiu. 2016. SpadeR: Species-richness prediction and diversity estimation with R. R package version 0.1.1. http://chao.stat.nthu.edu.tw/blog/software-download/
- Chao, A., and T. J. Shen. 2003. Nonparametric estimation of Shannon's index of diversity when there are unseen species in sample. Environmental and Ecological Statistics. 10: 429–443.
- Chase, J. M., N. J. B. Kraft, K. G. Smith, M. Vellend, and B. D. Inouye. 2011. Using null models to disentangle variation in community dissimilarity from variation in α-diversity. Ecosphere 2:art24.
- Chase, J. M., and J. A. Myers. 2011. Disentangling the importance of ecological niches from stochastic processes across scales. Philosophical Transactions of the Royal Society B 366: 2351–2363.
- Collins, C. D., et al. 2017. Fragmentation affects plant community composition over time. Ecography 40: 119–130.
- Condit, R., et al. 2002. Beta-diversity in tropical forest trees. Science 295: 666–669.
- Condit, R., B. M. J. Engelbrecht, D. Pino, R. Perez, and B. L. Turner. 2013. Species distributions in response to individual soil nutrients and seasonal drought across a community of tropical trees. Proceedings of the National Academy of Sciences USA 110: 5064–5068.
- Costa, J. B. P., F. P. L. Melo, B. A. Santos, and M. Tabarelli. 2012. Reduced availability of large seeds constrains Atlantic forest regeneration. Acta Oecologica 39: 61–66.
- Crist, T. O., J. A. Veech, J. C. Gering, and K. S. Summerville. 2003. Partitioning species diversity across landscapes and regions: a hierarchical analysis of alpha, beta, and gamma diversity. American Naturalist 162: 734–743.
- da Silva, J. M. C., and M. Tabarelli. 2000. Tree species impoverishment and the future flora of the Atlantic forest of northeast Brazil. Nature 404: 72–74.
- Damschen, E. I., and L. A. Brudvig. 2012. Landscape connectivity strengthens local-regional richness relationships in successional plant communities. Ecology 93: 704–710.
- Damschen, E. I., L. A. Brudvig, N. M. Haddad, D. J. Levey, J. L. Orrock, and J. J. Tewksbury. 2008. The movement ecology and dynamics of plant communities in fragmented landscapes. Proceedings of the National Academy of Sciences USA 105: 19078–19083.
- Davidar, P., B. Rajagopal, D. Mohandass, J.-P. Puyravaud, R. Condit, S. J. Wright, and E. G. Leigh. 2007. The effect of climatic gradients, topographic variation and species traits on the beta diversity of rain forest trees. Global Ecology and Biogeography 16: 510–518.
- Davis, K. T., S. Z. Dobrowski, Z. A. Holden, P. E. Higuera, and J. T. Abatzoglou. 2019. Microclimatic buffering in forests of the future: the role of local water balance. Ecography 42: 1–11.
- DeMattia, E., B. Ratchke, L. M. Curran, R. Aguilar, and O. Vargas. 2006. Effects of small rodents and large mammal exclusion on seedling recruitment in Costa Rica. Biotropica 38: 196–202.
- Dray, S. et al. 2012. Community ecology in the age of multivariate multiscale spatial analysis. Ecological Monographs 82: 257–275.
- Dray, S., et al. 2020. Multivariate Multiscale Spatial Analysis. R package version 0.3-8. https://CRAN.R-project.org/package=adespatial
- Engelbrecht, B. M. J., L. S. Comita, R. Condit, T. A. Kursar, M. T. Tyree, B. L. Turner, and S. P. Hubbell. 2007. Drought sensitivity shapes species distribution patterns in tropical forests. Nature 447: 80–82.
- Ewers, R. M., and C. Banks-Leite. 2013. Fragmentation impairs the microclimate buffering effect of tropical forests. PLoS ONE 8:e58093.
- Ewers, R. M., V. Kapos, D. A. Coomes, R. Lafortezza, and R. K. Didham. 2009. Mapping community change in modified landscapes. Biological Conservation 142: 2872–2880.
- Ewers, R. M., S. Thorpe, and R. K. Didham. 2007. Synergistic interactions between edge and area effects in a heavily fragmented landscape. Ecology 88: 96–106.
- Fahrig, L. 2003. Effects of habitat fragmentaion on biodiversity. Annual Review of Ecology, Evolution, and Systematics 34: 487–515.
- Fahrig, L. 2017. Ecological responses to habitat fragmentation per se. Annual Review of Ecology, Evolution, and Systematics 48: 1–23.
- Goslee, S. C., and D. L. Urban. 2007. The ecodist package for dissimilarity-based analysis of ecological data. Journal of Statistical Software 22, 1–19.
- Haddad, N. M., et al. 2015. Habitat fragmentation and its lasting impact on Earth's ecosystems. Science Advances 1:e1500052.
- Haddad, N. M., R. D. Holt, R. J. Fletcher Jr., M. Loreau, and J. Clobert. 2017. Connecting models, data, and concepts to understand fragmentation's ecosystem-wide effects. Ecography 40: 1–8.
- Hanski, I. 2015. Habitat fragmentation and species richness. Journal of Biogeography 42: 989–993.
- Hardy, O. J., P. Couteron, F. Munoz, B. R. Ramesh, and R. Pélissier. 2012. Phylogenetic turnover in tropical tree communities: impact of environmental filtering, biogeography and mesoclimatic niche conservatism. Global Ecology and Biogeography 21: 1007–1016.
- Hijmans, R. J., S. E. Cameron, J. L. Parra, P. G. Jones, and A. Jarvis. 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25: 1965–1978.
- Hill, J. K., M. A. Gray, C. V. Khen, S. Benedick, N. Tawatao, and K. C. Hamer. 2011. Ecological impacts of tropical forest fragmentation: how consistent are patterns in species richness and nestedness? Philosophical Transactions of the Royal Society B 366: 3265–3276.
- Ibáñez, I., D. S. W. Katz, D. Peltier, S. M. Wolf, and B. T. Connor Barrie. 2014. Assessing the integrated effects of landscape fragmentation on plants and plant communities: the challenge of multiprocess-multiresponse dynamics. Journal of Ecology 102: 882–895.
- Jost, L. 2006. Entropy and diversity. Oikos 113: 363–375.
- Knörr, U. C., and G. Gottsberger. 2012. Differences in seed rain composition in small and large fragments in the northeast Brazilian Atlantic Forest. Plant Biology 14: 811–819.
- Kraft, N. J. B., et al. 2011. Disentangling the drivers of β diversity along latitudinal and elevational gradients. Science 333: 1755–1758.
- Krishnadas, M., R. Bagchi, S. Sridhara, and L. S. Comita. 2018. Weaker plant-enemy interactions decrease tree seedling diversity with edge-effects in a fragmented tropical forest. Nature Communications 9: 4523.
- Krishnadas, M., and L. S. Comita. 2018. Influence of soil pathogens on early regeneration success of tropical trees varies between forest edge and interior. Oecologia 186: 259–268.
- Krishnadas, M., A. Kumar, and L. S. Comita. 2016. Environmental gradients structure tropical tree assemblages at the regional scale. Journal of Vegetation Science 27: 1117–1128.
- Krishnadas, M., A. N. Kumar, and L. S. Comita. 2019. Edge effects reduce α-diversity but not β-diversity during community assembly in a human-modified tropical forest. Ecological Applications 29: e01996.
- Laughlin, D. C. 2014. Applying trait-based models to achieve functional targets for theory-driven ecological restoration. Ecology Letters 17: 771–784.
- Laughlin, D. C., R. T. Strahan, M. M. Moore, P. Z. Fulé, D. W. Huffman, and W. W. Covington. 2017. The hierarchy of predictability in ecological restoration: Are vegetation structure and functional diversity more predictable than community composition? Journal of Applied Ecology 54: 1058–1069.
- Laurance, W. F., J. L. C. Camargo, P. M. Fearnside, T. E. Lovejoy, G. B. Williamson, R. C. G. Mesquita, C. F. J. Meyer, P. E. D. Bobrowiec, and S. G. W. Laurance. 2017. An Amazonian rainforest and its fragments as a laboratory of global change. Biological Reviews 93: 223–247.
- Laurance, W. F., H. E. M. Nascimento, S. G. Laurance, A. Andrade, R. M. Ewers, K. E. Harms, R. C. C. Luizão, and J. E. Ribeiro. 2007. Habitat fragmentation, variable edge effects, and the landscape-divergence hypothesis. PLoS ONE 2:e1017.
- Laurance, W. F., and S. J. Wright. 2009. Introduction: Special section: New insights into the tropical biodiversity crisis. Conservation Biology 23: 1382–1385.
- Legendre, P., D. Borcard, and P. R. Peres-neto. 2005. Analyzing beta diversity: partitioning the spatial variation of community composition data. Ecological Monographs 75: 435–450.
- Legendre, P., X. Mi, H. Ren, K. Ma, M. Yu, I.-F. Sun, and F. He. 2009. Partitioning beta diversity in a subtropical broad-leaved forest of China. Ecology 90: 663–674.
- Lôbo, D., T. Leão, F. P. L. Melo, A. M. M. Santos, and M. Tabarelli. 2011. Forest fragmentation drives Atlantic forest of northeastern Brazil to biotic homogenization. Diversity and Distributions 17: 287–296.
- Magrach, A., W. F. Laurance, A. R. Larrinaga, and L. Santamaria. 2014. Meta-analysis of the effects of forest fragmentation on interspecific interactions. Conservation Biology 28: 1342–1348.
- McEuen, A. B., and L. M. Curran. 2004. Seed dispersal and recruitment limitation across spatial scales in temperate forests. Ecology 85: 507–518.
- Melo, F. P. L., D. Lemire, and M. Tabarelli. 2007. Extirpation of large-seeded seedlings from the edge of a large Brazilian Atlantic forest fragment. Ecoscience 14: 124–129.
- Melo, F. P. L., E. Martínez-Salas, J. Benítez-Malvido, and G. Ceballos. 2010. Forest fragmentation reduces recruitment of large-seeded tree species in a semi-deciduous tropical forest of southern Mexico. Journal of Tropical Ecology 26: 35–43.
- Mori, A. S., S. Fujii, R. Kitagawa, and D. Koide. 2015. Null model approaches to evaluating the relative role of different assembly processes in shaping ecological communities. Oecologia 178: 261–273.
- Mori, A. S., F. Isbell, and R. Seidl. 2018. β-Diversity, community assembly, and ecosystem functioning. Trends in Ecology and Evolution 33: 549–564.
- Mueller, R. C., J. L. M. Rodrigues, K. Nüsslein, and B. J. M. Bohannan. 2016. Land use change in the Amazon rain forest favours generalist fungi. Functional Ecology 30: 1845–1853.
- Muller-Landau, H. C. 2010. The tolerance-fecundity trade-off and the maintenance of diversity in seed size. Proceedings of the National Academy of Sciences USA 107: 4242–4247.
- Myers, J. A., J. M. Chase, R. M. Crandall, and I. Jiménez. 2015. Disturbance alters beta-diversity but not the relative importance of community assembly mechanisms. Journal of Ecology 103: 1291–1299.
- Myers, J., and K. E. Harms. 2009. Seed arrival, ecological filters, and plant species richness: a meta-analysis. Ecology Letters 12: 1250–1260.
- Oksanen, J., et al. 2017. vegan: community ecology package. R package version 2.4-4. https://CRAN.R-project.org/package=vegan
- Olden, J. D., and T. P. Rooney. 2006. On defining and quantifying biotic homogenization. Global Ecology and Biogeography 15: 113–120.
- Osuri, A. M., and M. Sankaran. 2016a. Seed size predicts community composition and carbon storage potential of tree communities in rain forest fragments in India's Western Ghats. Journal of Applied Ecology 53: 837–845.
- Osuri, A. M., and M. Sankaran. 2016b. Data from: Seed size predicts community composition and carbon storage potential of tree communities in rainforest fragments in India's Western Ghats. Dryad Digital Repository. https://doi.org/10.5061/dryad.vd0nn.2.
10.5061/dryad.vd0nn.2 Google Scholar
- Page, N. V., and K. Shanker. 2018. Environment and dispersal influence changes in species composition at different scales in woody plants of the Western Ghats, India. Journal of Vegetation Science 29: 74–83.
- Pascal, J. P. 1986. Explanatory booklet on the forest map of South India. Sheets: Belgaum-Dharwar-Panaji, Shimoga, Mercara-Mysore. Institut Français De Pondichery, India.
- Püttker, T., A. de Arruda Bueno, P. I. Prado, and R. Pardini. 2015. Ecological filtering or random extinction? Beta-diversity patterns and the importance of niche-based and neutral processes following habitat loss. Oikos 124: 206–215.
- R Core Team 2017. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/
- Ricklefs, R. E. 2004. A comprehensive framework for global patterns in biodiversity. Ecology Letters 7: 1–15.
- Santo-Silva, E. E., W. R. Almeida, F. P. L. Melo, C. S. Zickel, and M. Tabarelli. 2013. The nature of seedling assemblages in a fragmented tropical landscape: Implications for forest regeneration. Biotropica 45: 386–394.
- Sfair, J. C., V. Arroyo-Rodríguez, B. A. Santos, and M. Tabarelli. 2016. Taxonomic and functional divergence of tree assemblages in a fragmented tropical forest. Ecological Applications 26: 1816–1826.
- Socolar, J. B., J. J. Gilroy, W. E. Kunin, and D. P. Edwards. 2016. How should beta-diversity inform biodiversity conservation? Trends in Ecology & Evolution 31: 67–80.
- Solar, R. R. C., et al. 2015. How pervasive is biotic homogenization in human-modified tropical forest landscapes? Ecology Letters 18: 1108–1118.
- Tabarelli, M., C. A. Peres, and F. P. L. Melo. 2012. The ‘few winners and many losers’ paradigm revisited: emerging prospects for tropical forest biodiversity. Biological Conservation 155: 136–140.
- Tello, J. S., et al. 2015. Elevational gradients in β-diversity reflect variation in the strength of local community assembly mechanisms across spatial scales. PLoS ONE 10:e0121458.
- Tscharntke, T., et al. 2012. Landscape moderation of biodiversity patterns and processes—eight hypotheses. Biological Reviews of the Cambridge Philosophical Society 87: 661–685.
- Tuomisto, H. 2003. Dispersal, environment, and floristic variation of western Amazonian forests. Science 299: 241–244.
- Tuomisto, H., and K. Rukolainen. 2006. Analyzing or explaining beta diversity? Understanding the targets of different methods of analysis. Ecology 87: 2697–2708.
- Tuomisto, H., L. Ruokolainen, and K. Ruokolainen. 2012. Modelling niche and neutral dynamics: on the ecological interpretation of variation partitioning results. Ecography 35: 961–971.
- Tuomisto, H., G. Zuquim, and G. Cárdenas. 2014. Species richness and diversity along edaphic and climatic gradients in Amazonia. Ecography 37: 1034–1046.
- Vellend, M., et al. 2007. Homogenization of forest plant communities and weakening of species-environment relationships via agricultural land use. Journal of Ecology 95: 565–573.
- Visser, M. D., M. Bruijning, S. J. Wright, H. C. Muller-Landau, E. Jongejans, L. S. Comita, and H. Kroon. 2016. Functional traits as predictors of vital rates across the life cycle of tropical trees. Functional Ecology 30: 168–180.
- Wills, C., and R. Condit. 1999. Similar non-random processes maintain diversity in two tropical rainforests. Proceedings of the Royal Society B 266: 1445–1452.
- Wright, S. J. 2002. Plant diversity in tropical forests: a review of mechanisms of species coexistence. Oecologia 130: 1–14.
- Zirbel, C. R., and L. A. Brudvig. 2020. Trait–environment interactions affect plant establishment success during restoration. Ecology 101: 1–7.