Journal list menu
No evidence that modification of soil microbiota by woody invader facilitates subsequent invasion by herbaceous species
Yan Li
Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
Search for more papers by this authorCorresponding Author
Xingliang Xu
Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
Correspondence
Xingliang Xu
Email: [email protected]
Search for more papers by this authorYan Li
Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
Search for more papers by this authorCorresponding Author
Xingliang Xu
Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
Correspondence
Xingliang Xu
Email: [email protected]
Search for more papers by this authorAbstract
enMany terrestrial ecosystems are co-invaded by multiple exotic species. The “invasional meltdown” hypothesis predicts that an initial invasive species will facilitate secondary invasions. In the plant kingdom, the potential underlying mechanisms of this hypothesis may be that modification of the soil properties by the initial invaders benefits for the subsequent exotic species invasion. In this study, we analyzed the composition of soil microbial communities and soil chemical properties from sites invaded by woody Rhus typhina, as well as uninvaded sites, to assess the impact of R. typhina invasion. Furthermore, we conducted a greenhouse experiment with multiple native–invasive pairs of herbaceous species to test whether R. typhina invasion facilitates subsequent exotic herb invasion. Our results showed that R. typhina invasion significantly altered the composition of soil fungal communities, especially pathogenic, endophytic, and arbuscular mycorrhizal fungi. However, this change in microbial composition led to neither direction nor magnitude changes in negative plant–soil feedback effects on both native and invasive species. This indicates that initial R. typhina invasion does not facilitate subsequent herb invasion, which does not support the “invasional meltdown” hypothesis. Additionally, R. typhina invasion significantly decreased soil total nitrogen and organic carbon contents, which may explain the significantly lower biomass of herbaceous roots grown in invaded soils compared with uninvaded soils. Alternately, although invasive herb growth was significantly more inhibited by soil microbiota compared with native herb growth, such inhibition cannot completely eliminate the risk of exotic herb invasion because of their innate growth advantages. Therefore, microbial biocontrol agents for plant invasion management should be combined with another approach to suppress the innate growth advantages of exotic species.
外来入侵木本植物对土壤微生物群的改变并未促进外来草本植物入侵
zh许多陆地生态系统正遭受到多种外来物种的共同入侵。“入侵崩溃”假说认为:一个外来种成功入侵之后, 会促进其他外来种后续的入侵, 进而放大入侵的危害。对植物入侵而言,这一假说的潜在机制可能是初始入侵者改变了土壤特征、特别是微生物群落组成,从而有利于后续的外来植物入侵。该研究收集了来自被外来木本植物火炬树(Rhus typhina)入侵及相邻的未被其入侵的生境的土壤样品,分析了土壤微生物群落组成与化学性质差异,并进一步通过一个多物种对的温室实验检验这些土壤性质的改变是否会促进外来草本植物的后续入侵。结果显示:火炬树入侵显著改变了土壤真菌群落的组成——特别是病原菌、内生菌和丛枝菌根真菌。土壤微生物的存在会同时抑制外来入侵植物与本地植物的生长,即存在负反馈效应。然而,这种土壤负反馈效应的方向与强度并未因为火炬树入侵引起的土壤微生物组成的变化而改变,暗示火炬树的成功入侵并不能促进外来草本植物的后续入侵,即研究结果不支持“入侵崩溃”假说。此外,火炬树入侵显著降低了土壤总氮和有机碳含量,因此在火炬树入侵生境土壤中生长的草本植物产生了更少的根系生物量。另外,不管是来自火炬树入侵生境还是邻近非入侵生境的土壤,其微生物的存在对外来草本植物生长的抑制效应显著强于本地草本植物。但是,这种不对称抑制效应并不能消除外来草本植物由于其先天的生长优势带来的入侵风险。因此,在使用微生物控制剂进行外来植物入侵防控时需考虑结合其他手段,进一步抑制外来入侵植物的先天生长优势。
CONFLICT OF INTEREST STATEMENT
The authors declare no conflict of interest.
Open Research
DATA AVAILABILITY STATEMENT
Data (Li & Xu, 2022) are available in Figshare at https://doi.org/10.6084/m9.figshare.21739268.v1.
Supporting Information
Filename | Description |
---|---|
eap2807-sup-0001-AppendixS1.pdfPDF document, 110.3 KB | Appendix S1. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- Agrawal, A. A., P. M. Kotanen, C. E. Mitchell, A. G. Power, W. Godsoe, and J. Klironomos. 2005. “Enemy Release? An Experiment with Congeneric Plant Pairs and Diverse above and Belowground Enemies.” Ecology 86(11): 2979–89. https://doi.org/10.1890/05-0219.
- Allen, G. C., M. A. Flores-Vergara, S. Krasynanski, S. Kumar, and W. F. Thompson. 2006. “A Modified Protocol for Rapid DNA Isolation from Plant Tissues Using Cetyltrimethylammonium Bromide.” Nature Protocols 1(5): 2320–5. https://doi.org/10.1038/nprot.2006.384.
- Altschul, S. F., W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. 1990. “Basic Local Alignment Search Tool.” Journal of Molecular Biology 215(3): 403–10. https://doi.org/10.1016/S0022-2836(05)80360-2.
- Aschehoug, E. T., K. L. Metlen, R. M. Callaway, and G. Newcombe. 2012. “Fungal Endophytes Directly Increase the Competitive Effects of an Invasive Forb.” Ecology 93(1): 3–8. https://doi.org/10.1890/11-1347.1.
- Bank, T. L., R. K. Kukkadapu, A. S. Madden, M. A. Ginder-Vogel, M. E. Baldwin, and P. M. Jardine. 2008. “Effects of Gamma-Sterilization on the Physico-Chemical Properties of Natural Sediments.” Chemical Geology 251(1–4): 1–7. https://doi.org/10.1016/j.chemgeo.2008.01.003.
- Bauer, J. T., K. M. L. Mack, and J. D. Bever. 2015. “Plant-Soil Feedbacks as Drivers of Succession: Evidence from Remnant and Restored Tallgrass Prairies.” Ecosphere 6(9): art158. https://doi.org/10.1890/ES14-00480.1.
- Bogar, L. M., I. A. Dickie, and P. G. Kennedy. 2015. “Testing the Co-Invasion Hypothesis: Ectomycorrhizal Fungal Communities on Alnus Glutinosa and Salix Fragilis in New Zealand.” Diversity and Distributions 21(3): 268–78. https://doi.org/10.1111/ddi.12304.
- Caporaso, J. G., J. Kuczynski, J. Stombaugh, K. Bittinger, F. D. Bushman, E. K. Costello, N. Fierer, et al. 2010. “QIIME Allows Analysis of High-Throughput Community Sequencing Data.” Nature Methods 7(5): 335–6. https://doi.org/10.1038/nmeth.f.303.
- Chen, P., Q. Huang, Y. Zhuge, C. Li, P. Zhu, and Y. Hou. 2021. “The Effects of Plant–Soil Feedback on Invasion Resistance Are Soil Context Dependent.” Oecologia 197(1): 213–22. https://doi.org/10.1007/s00442-021-05004-8.
- Chen, W., J. Simpson, and C. Levesque. 2016. “RAM: R for Amplicon-Sequencing-Based Microbial-Ecology.” R Package Version 1.2.1.3. https://CRAN.R-project.org/package=RAM.
- Christian, J. M., and S. D. Wilson. 1999. “Long-Term Ecosystem Impacts of an Introduced Grass in the Northern Great Plains.” Ecology 80(7): 2397–407. https://doi.org/10.1890/0012-9658(1999)080[2397:LTEIOA]2.0.CO;2.
- D'Antonio, C. M., R. Ostertag, S. Cordell, and S. Yelenik. 2017. “Interactions among Invasive Plants: Lessons from Hawai'i.” Annual Review of Ecology, Evolution, and Systematics 48(1): 521–41. https://doi.org/10.1146/annurev-ecolsys-110316-022620.
- Dickie, I. A., J. A. Cooper, J. L. Bufford, P. E. Hulme, and S. T. Bates. 2017. “Loss of Functional Diversity and Network Modularity in Introduced Plant–Fungal Symbioses.” AoB Plants 9(1): plw084. https://doi.org/10.1093/aobpla/plw084.
- Dixon, P. 2003. “VEGAN, a Package of R Functions for Community Ecology.” Journal of Vegetation Science 14(6): 927–30. https://doi.org/10.1111/j.1654-1103.2003.tb02228.x.
- Dostál, P., J. Müllerová, P. Pyšek, J. Pergl, and T. Klinerová. 2013. “The Impact of an Invasive Plant Changes over Time.” Ecology Letters 16(10): 1277–84. https://doi.org/10.1111/ele.12166.
- Dudenhöffer, J. H., A. Ebeling, A. M. Klein, and C. Wagg. 2018. “Beyond Biomass: Soil Feedbacks Are Transient over Plant Life Stages and Alter Fitness.” Journal of Ecology 106(1): 230–41. https://doi.org/10.1111/1365-2745.12870.
- Edgar, R. C., B. J. Haas, J. C. Clemente, C. Quince, and R. Knight. 2011. “UCHIME Improves Sensitivity and Speed of Chimera Detection.” Bioinformatics 27(16): 2194–200. https://doi.org/10.1093/bioinformatics/btr381.
- Ehrenfeld, J. G. 2003. “Effects of Exotic Plant Invasions on Soil Nutrient Cycling Processes.” Ecosystems 6(6): 503–23. https://doi.org/10.1007/s10021-002-0151-3.
- Elton, C. S. 1958. The Ecology of Invasions by Animals and Plants. London: Chapman and Hall. https://doi.org/10.1007/978-1-4899-7214-9.
- Flory, S. L., J. Bauer, R. P. Phillips, and K. Clay. 2017. “Effects of a Non-native Grass Invasion Decline over Time.” Journal of Ecology 105(6): 1475–84. https://doi.org/10.1111/1365-2745.12850.
- Flory, S. L., and J. T. Bauer. 2014. “Experimental Evidence for Indirect Facilitation among Invasive Plants.” Journal of Ecology 102(1): 12–8. https://doi.org/10.1111/1365-2745.12186.
- Hale, A. N., S. J. Tonsor, and S. Kalisz. 2011. “Testing the Mutualism Disruption Hypothesis: Physiological Mechanisms for Invasion of Intact Perennial Plant Communities.” Ecosphere 2(10): art110. https://doi.org/10.1890/ES11-00136.1.
- Hassol, S. J., and J. Katzenberger. 1995. “Biological Invasion as a Global Change. A Report on the Aspen Global Change Workshop.” Aspen, Colorado USA. Citeseer.
- Inderjit, and W. H. van der Putten. 2010. “Impacts of Soil Microbial Communities on Exotic Plant Invasions.” Trends in Ecology & Evolution 25(9): 512–9. https://doi.org/10.1016/j.tree.2010.06.006.
- Jackson, R. B., J. L. Banner, E. G. Jobbágy, W. T. Pockman, and D. H. Wall. 2002. “Ecosystem Carbon Loss with Woody Plant Invasion of Grasslands.” Nature 418(6898): 623–6. https://doi.org/10.1038/nature00910.
- Jordan, N. R., D. L. Larson, and S. C. Huerd. 2008. “Soil Modification by Invasive Plants: Effects on Native and Invasive Species of Mixed-Grass Prairies.” Biological Invasions 10(2): 177–90. https://doi.org/10.1007/s10530-007-9121-1.
- Jost, L. 2006. “Entropy and Diversity.” Oikos 113(2): 363–75. https://doi.org/10.1111/j.2006.0030-1299.14714.x.
- Kjeldahl, J. 1883. “Neue Methode zur Bestimmung des Stickstoffs in organischen Körpern.” Zeitschrift für Analytische Chemie 22(1): 366–82. https://doi.org/10.1007/BF01338151.
10.1007/BF01338151 Google Scholar
- Kõljalg, U., R. H. Nilsson, K. Abarenkov, L. Tedersoo, A. F. S. Taylor, M. Bahram, S. T. Bates, et al. 2013. “Towards a Unified Paradigm for Sequence-Based Identification of Fungi.” Molecular Ecology 22(21): 5271–7. https://doi.org/10.1111/mec.12481.
- Kuebbing, S. E., A. T. Classen, J. J. Call, J. A. Henning, and D. Simberloff. 2015. “Plant–Soil Interactions Promote co-Occurrence of Three Nonnative Woody Shrubs.” Ecology 96(8): 2289–99. https://doi.org/10.1890/14-2006.1.
- Kuebbing, S. E., and M. A. Nuñez. 2015. “Negative, Neutral, and Positive Interactions among Nonnative Plants: Patterns, Processes, and Management Implications.” Global Change Biology 21(2): 926–34. https://doi.org/10.1111/gcb.12711.
- Kuebbing, S. E., M. A. Nuñez, and D. Simberloff. 2013. “Current Mismatch between Research and Conservation Efforts: The Need to Study co-Occurring Invasive Plant Species.” Biological Conservation 160: 121–9. https://doi.org/10.1016/j.biocon.2013.01.009.
- Kuebbing, S. E., C. M. Patterson, A. T. Classen, and D. Simberloff. 2016. “Co-Occurring Nonnative Woody Shrubs Have Additive and Non-additive Soil Legacies.” Ecological Applications 26(6): 1896–906. https://doi.org/10.1890/15-1931.1.
- Kulmatiski, A., K. H. Beard, J. R. Stevens, and S. M. Cobbold. 2008. “Plant–Soil Feedbacks: A Meta-Analytical Review.” Ecology Letters 11(9): 980–92. https://doi.org/10.1111/j.1461-0248.2008.01209.x.
- Li, Y., and X. Xu. 2022. “Data from: Yan Li & Xingliang Xu (2022) No Evidence that Modification of Soil Microbiota by Woody Invader Facilitate Subsequent Invasion by Herbaceous Species, Ecological Applications.” Figshare. Dataset. https://doi.org/10.6084/m9.figshare.21739268.v1.
10.6084/m9.figshare.21739268.v1 Google Scholar
- Liao, C., R. Peng, Y. Luo, X. Zhou, X. Wu, C. Fang, J. Chen, and B. Li. 2008. “Altered Ecosystem Carbon and Nitrogen Cycles by Plant Invasion: A Meta-Analysis.” New Phytologist 177(3): 706–14. https://doi.org/10.1111/j.1469-8137.2007.02290.x.
- Lone, P. A., J. A. Dar, K. Subashree, D. Raha, P. K. Pandey, T. Ray, P. K. Khare, and M. L. Khan. 2019. “Impact of Plant Invasion on Physical, Chemical and Biological Aspects of Ecosystems: A Review.” Tropical Plant Research 6(3): 528–44. https://doi.org/10.22271/tpr.2019.v6.i3.067.
10.22271/tpr.2019.v6.i3.067 Google Scholar
- Lundberg, D. S., S. L. Lebeis, S. H. Paredes, S. Yourstone, J. Gehring, S. Malfatti, J. Tremblay, et al. 2012. “Defining the Core Arabidopsis thaliana Root Microbiome.” Nature 488(7409): 86–90. https://doi.org/10.1038/nature11237.
- Ma, J. 2021. Alien Invasive Flora of China. Shanghai: Shanghai Jiao Tong University Press.
- Macarthur, R., and R. Levins. 1967. “The Limiting Similarity, Convergence, and Divergence of Coexisting Species.” The American Naturalist 101(921): 377–85. https://doi.org/10.1086/282505.
- Mangla, S., and R. M. Callaway. 2008. “Exotic Invasive Plant Accumulates Native Soil Pathogens which Inhibit Native Plants.” Journal of Ecology 96(1): 58–67. https://doi.org/10.1111/j.1365-2745.2007.01312.x.
- McNamara, N. P., H. I. J. Black, N. A. Beresford, and N. R. Parekh. 2003. “Effects of Acute Gamma Irradiation on Chemical, Physical and Biological Properties of Soils.” Applied Soil Ecology 24(2): 117–32. https://doi.org/10.1016/S0929-1393(03)00073-8.
- Morris, W. F., R. A. Hufbauer, A. A. Agrawal, J. D. Bever, V. A. Borowicz, G. S. Gilbert, J. L. Maron, et al. 2007. “Direct and Interactive Effects of Enemies and Mutualists on Plant Performance: A Meta-Analysis.” Ecology 88(4): 1021–9. https://doi.org/10.1890/06-0442.
- Nelson, D. W., and L. E. Sommers. 1983. “ Total Carbon, Organic Carbon, and Organic Matter.” In Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties, edited by A. L. Page, 539–79. Madison, WI: ASA and SSSA. https://doi.org/10.2134/agronmonogr9.2.2ed.c29.
10.2134/agronmonogr9.2.2ed.c29 Google Scholar
- Nguyen, N. H., Z. Song, S. T. Bates, S. Branco, L. Tedersoo, J. Menke, J. S. Schilling, and P. G. Kennedy. 2016. “FUNGuild: An Open Annotation Tool for Parsing Fungal Community Datasets by Ecological Guild.” Fungal Ecology 20: 241–8. https://doi.org/10.1016/j.funeco.2015.06.006.
- Oschrin, E., and H. L. Reynolds. 2020. “Interpreting Pattern in Plant-Soil Feedback Experiments with co-Occurring Invasive Species: A Graphical Framework and Case Study.” Diversity 12(5): 201. https://doi.org/10.3390/d12050201.
- Pinheiro, J., D. Bates, S. DebRoy, D. Sarkar, and R Core Team. 2013. “nlme: Linear and Nonlinear Mixed Effects Models.” R Package Version 3.1-108. https://CRAN.R-project.org/package=nlme.
- Pratt, P. F. 1965. “ Potassium.” In Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties, edited by A. G. Norman, 1022–30. Madison, WI: ASA and SSSA. https://doi.org/10.2134/agronmonogr9.2.c20.
10.2134/agronmonogr9.2.c20 Google Scholar
- Qu, T., X. Du, Y. Peng, W. Guo, C. Zhao, and G. Losapio. 2021. “Invasive Species Allelopathy Decreases Plant Growth and Soil Microbial Activity.” PLoS One 16(2): e0246685. https://doi.org/10.1371/journal.pone.0246685.
- R Core Team. 2019. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing https://www.R-project.org/.
- Rasmussen, H. N., K. W. Dixon, J. Jersáková, and T. Těšitelová. 2015. “Germination and Seedling Establishment in Orchids: A Complex of Requirements.” Annals of Botany 116(3): 391–402. https://doi.org/10.1093/aob/mcv087.
- Rauschert, E. S. J., and K. Shea. 2012. “Invasional Interference Due to Similar Inter- and Intraspecific Competition between Invaders May Affect Management.” Ecological Applications 22(5): 1413–20. https://doi.org/10.1890/11-2107.1.
- Reinhart, K. O., and R. M. Callaway. 2006. “Soil Biota and Invasive Plants.” New Phytologist 170(3): 445–57. https://doi.org/10.1111/j.1469-8137.2006.01715.x.
- Richardson, D. M., N. Allsopp, C. M. D'Antonio, S. J. Milton, and M. RejmÁNek. 2000. “Plant Invasions – The Role of Mutualisms.” Biological Reviews 75(1): 65–93. https://doi.org/10.1111/j.1469-8137.2006.01715.x.
- Sardans, J., M. Bartrons, O. Margalef, A. Gargallo-Garriga, I. A. Janssens, P. Ciais, and J. Penuelas. 2017. “Plant Invasion is Associated with Higher Plant-Soil Nutrient Concentrations in Nutrient-Poor Environments.” Global Change Biology 23(3): 1282–91. https://doi.org/10.1111/gcb.13384.
- Sheppard, C. S., M. Carboni, F. Essl, H. Seebens, D. Consortium, and W. Thuiller. 2018. “It Takes One to Know One: Similarity to Resident Alien Species Increases Establishment Success of New Invaders.” Diversity and Distributions 24(5): 680–91. https://doi.org/10.1111/ddi.12708.
- Shipunov, A., G. Newcombe, A. K. H. Raghavendra, and C. L. Anderson. 2008. “Hidden Diversity of Endophytic Fungi in an Invasive Plant.” American Journal of Botany 95(9): 1096–108. https://doi.org/10.3732/ajb.0800024.
- Simberloff, D., and B. Von Holle. 1999. “Positive Interactions of Nonindigenous Species: Invasional Meltdown?” Biological Invasions 1(1): 21–32. https://doi.org/10.1023/A:1010086329619.
10.1023/A:1010086329619 Google Scholar
- Stinson, K. A., S. A. Campbell, J. R. Powell, B. E. Wolfe, R. M. Callaway, G. C. Thelen, S. G. Hallett, D. Prati, and J. N. Klironomos. 2006. “Invasive Plant Suppresses the Growth of Native Tree Seedlings by Disrupting Belowground Mutualisms.” PLoS Biology 4(5): e140. https://doi.org/10.1371/journal.pbio.0040140.
- Tekiela, D. R., and J. N. Barney. 2017. “Co-Invasion of Similar Invaders Results in Analogous Ecological Impact Niches and No Synergies.” Biological Invasions 19(1): 147–59. https://doi.org/10.1007/s10530-016-1269-0.
- Vanderhoeven, S., N. Dassonville, and P. Meerts. 2005. “Increased Topsoil Mineral Nutrient Concentrations under Exotic Invasive Plants in Belgium.” Plant and Soil 275(1): 169–79. https://doi.org/10.1007/s11104-005-1257-0.
- Verbeek, J. D., and P. M. Kotanen. 2019. “Soil-Mediated Impacts of an Invasive Thistle Inhibit the Recruitment of Certain Native Plants.” Oecologia 190(3): 619–28. https://doi.org/10.1007/s00442-019-04435-8.
- Vitousek, P. M., and L. R. Walker. 1989. “Biological Invasion by Myrica faya in Hawai'i: Plant Demography, Nitrogen Fixation, Ecosystem Effects.” Ecological Monographs 59(3): 247–65. https://doi.org/10.2307/1942601.
- Waller, L. P., W. J. Allen, B. I. P. Barratt, L. M. Condron, F. M. França, J. E. Hunt, N. Koele, et al. 2020. “Biotic Interactions Drive Ecosystem Responses to Exotic Plant Invaders.” Science 368(6494): 967–72. https://doi.org/10.1126/science.aba2225.
- Wang, G., G. Jiang, S. Yu, Y. Li, and H. Liu. 2008. “Invasion Possibility and Potential Effects of Rhus typhina on Beijing Municipality.” Journal of Integrative Plant Biology 50(5): 522–30. https://doi.org/10.1111/j.1744-7909.2008.00660.x.
- Wang, Q., G. M. Garrity, J. M. Tiedje, and J. R. Cole. 2007. “Naive Bayesian Classifier for Rapid Assignment of rRNA Sequences into the New Bacterial Taxonomy.” Applied and Environmental Microbiology 73(16): 5261–7. https://doi.org/10.1128/AEM.00062-07.
- Weber, E., and D. Gut. 2004. “Assessing the Risk of Potentially Invasive Plant Species in Central Europe.” Journal for Nature Conservation 12: 171–9. https://doi.org/10.1016/j.jnc.2004.04.002.
10.1016/j.jnc.2004.04.002 Google Scholar
- Weber, E., S. G. Sun, and B. Li. 2008. “Invasive Alien Plants in China: Diversity and Ecological Insights.” Biological Invasions 10(8): 1411–29. https://doi.org/10.1007/s10530-008-9216-3.
- Yang, S., M. J. Ferrari, and K. Shea. 2011. “Pollinator Behavior Mediates Negative Interactions between Two Congeneric Invasive Plant Species.” The American Naturalist 177(1): 110–8. https://doi.org/10.1007/s42991-022-00313-8.
- Yatirajam, V., and S. Dhamija. 1979. “Extractive Separation and Spectrophotometric Determination of Tungsten as Ferrocyanide.” Talanta 26(4): 317–21. https://doi.org/10.1016/0039-9140(79)80073-9.
- Yuan, Y., W. Guo, W. Ding, N. Du, Y. Luo, J. Liu, F. Xu, and R. Wang. 2013. “Competitive Interaction between the Exotic Plant Rhus typhina L. and the Native Tree Quercus acutissima Carr. in Northern China under Different Soil N:P Ratios.” Plant and Soil 372(1): 389–400. https://doi.org/10.1007/s11104-013-1748-3.
- Zhang, Z., Y. Liu, C. Brunel, and M. van Kleunen. 2020a. “Evidence for Elton's Diversity–Invasibility Hypothesis from Belowground.” Ecology 101(12): e03187. https://doi.org/10.1002/ecy.3187.
- Zhang, Z., Y. Liu, C. Brunel, and M. van Kleunen. 2020b. “Soil-Microorganism-Mediated Invasional Meltdown in Plants.” Nature Ecology & Evolution 4(12): 1612–21. https://doi.org/10.1038/s41559-020-01311-0.
- Zuur, A. F., E. N. Ieno, N. Walker, A. A. Saveliev, and G. M. Smith. 2009. Mixed Effects Models and Extensions in Ecology with R. New York: Springer. https://doi.org/10.1007/978-0-387-87458-6.
10.1007/978-0-387-87458-6 Google Scholar