Journal list menu
Absence of net long-term successional facilitation by alder in a boreal Alaska floodplain
Corresponding Author
F. Stuart Chapin III
Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska, 99775 USA
E-mail: [email protected]Search for more papers by this authorAlexandra J. Conway
Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, Saskatchewan, S7N 5E2 Canada
Search for more papers by this authorJill F. Johnstone
Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, Saskatchewan, S7N 5E2 Canada
Search for more papers by this authorTeresa N. Hollingsworth
USDA Forest Service, Pacific Northwest Research Station, Fairbanks, Alaska, 99775 USA
Search for more papers by this authorJamie Hollingsworth
Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska, 99775 USA
Search for more papers by this authorCorresponding Author
F. Stuart Chapin III
Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska, 99775 USA
E-mail: [email protected]Search for more papers by this authorAlexandra J. Conway
Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, Saskatchewan, S7N 5E2 Canada
Search for more papers by this authorJill F. Johnstone
Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, Saskatchewan, S7N 5E2 Canada
Search for more papers by this authorTeresa N. Hollingsworth
USDA Forest Service, Pacific Northwest Research Station, Fairbanks, Alaska, 99775 USA
Search for more papers by this authorJamie Hollingsworth
Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska, 99775 USA
Search for more papers by this authorAbstract
Long-term experiments provide a way to test presumed causes of successional or environmentally driven vegetation changes. Early-successional nitrogen (N)-fixing plants are widely thought to facilitate productivity and vegetation development on N-poor sites, thus accounting for observed vegetation patterns later in succession. We tested this facilitative impact on vegetation development in a 23-yr field experiment on an Interior Alaska (USA) floodplain. On three replicate early-successional silt bars, we planted late-successional white spruce (Picea glauca) seedlings in the presence and absence of planted seedlings of an early-successional N-fixing shrub, thinleaf alder (Alnus incana). Alder initially facilitated survivorship and growth of white spruce. Within six years, however, after canopy closure, alder negatively affected spruce survivorship and growth. Our three replicate sites followed different successional trajectories. One site was eliminated by erosion and supported no vegetation development during our study. The other two sites, which differed in site moisture, diverged in vegetation composition. Structural equation modeling (SEM) suggested that, in the drier of these two sites, alder inhibited spruce growth directly (presumably by competition) and indirectly through effects mediated by competition with other woody species. However, at the wetter site, alder had both positive and negative effects on spruce growth, with negative effects predominating. Snowshoe hares (Lepus americanus) in alder thickets further reduced height growth of spruce in the wetter site. We conclude that net effects of alder on white spruce, the late-successional dominant, were primarily inhibitory and indirect, with the mechanisms depending on initial site moisture. Our results highlight the importance of long-term research showing that small differences among initial replicate sites can cause divergence in successional trajectories, consistent with individualistic distributions of species and communities along environmental gradients. This divergence was detectable only decades later.
Supporting Information
Filename | Description |
---|---|
ecy1529-sup-0001-AppendixS1.docxWord document, 4 MB |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
Literature Cited
- Angell, A., and K. Kielland. 2009. Establishment and growth of white spruce on a boreal forest floodplain: interactions between microclimate and mammalian herbivory. Forest Ecology and Management 258: 2475–2480.
- Bates, D., M. Maechler, B. Bolker, and S. Walker. 2015. Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67: 1–48.
- Begét, J. E., D. Stone, and D. L. Verbyla. 2006. Regional overview of interior Alaska. Pages 12–20 in F. S. Chapin, M. W. Oswood, K. Van Cleve, L. A. Viereck, and D. L. Verbyla, editors. Alaska's changing boreal forest. Oxford University Press, New York, New York, USA.
- Binkley, D., P. Sollins, R. Bell, D. Sachs, and D. Myrold. 1992. Biogeochemistry of adjacent conifer and alder–conifer stands. Ecology 73: 2022–2033.
- Bonanomi, G., G. Incerti, and S. Mazzoleni. 2011. Assessing occurrence, specificity, and mechanisms of plant facilitation in terrestrial ecosystems. Plant Ecology 212: 1777–1790.
- Bradshaw, A. D. 1983. The reconstruction of ecosystems. Journal of Ecology 20: 1–17.
- Braun-Blanquet, J. 1956. Ein Jahrhundert Florenwandel am Piz Linard (3414 m). Bulletin du Jardin Botanique de l'Etat a Bruxelles 26: 221–232.
- Bruno, J. F., J. J. Stachowicz, and M. D. Bertness. 2003. Inclusion of facilitation into ecological theory. Trends in Ecology and the Environment 18: 119–126.
- Bryant, J. P., and F. S. Chapin III. 1986. Browsing-woody plant interactions during boreal forest plant succession. Pages 213–225 in K. Van Cleve, F. S. Chapin, P. W. Flanagan, L. A. Viereck, and C. T. Dyrness, editors. Forest ecosystems in the Alaskan taiga: a synthesis of structure and function. Springer-Verlag, New York, New York, USA.
- Bryant, J. P., and P. J. Kuropat. 1980. Selection of winter forage by subarctic browsing vertebrates: the role of plant chemistry. Annual Review of Ecology and Systematics 11: 261–285.
- Bryant, J. P., F. S. Chapin III, and D. R. Klein. 1983. Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory. Oikos 40: 357–368.
- Callaway, R. M. 2007. Positive interactions and interdependence in plant communities. Springer, Dordrecht, Netherlands.
- Callaway, R. M., and L. R. Walker. 1997. Competition and facilitation: a synthetic approach to interactions in plant communities. Ecology 78: 1958–1965.
- Chapin III, F. S., L. R. Walker, C. L. Fastie, and L. C. Sharman. 1994. Mechanisms of primary succession following deglaciation at Glacier Bay, Alaska. Ecological Monographs 64: 149–175.
- Chapin III, F. S., L. A. Viereck, P. Adams, K. Van Cleve, C. L. Fastie, R. A. Ott, D. Mann, and J. F. Johnstone. 2006. Successional processes in the Alaskan boreal forest. Pages 100–120 in F. S. Chapin, M. W. Oswood, K. Van Cleve, L. A. Viereck, and D. L. Verbyla, editors. Alaska's changing boreal forest. Oxford University Press, New York, New York, USA.
- Clarke, K. 1993. Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology 18: 117–143.
- Clements, F. E. 1916. Plant succession: an analysis of the development of vegetation. Publication 242. Carnegie Institution of Washington, Washington, D.C., USA.
- Crocker, R. L., and J. Major. 1955. Soil development in relation to vegetation and surface age at Glacier Bay, Alaska. Journal of Ecology 43: 427–448.
- del Moral, R. 1999. Plant succession on pumice at Mount St. Helens, Washington. American Midland Naturalist 141: 101–114.
- del Moral, R. 2009. Increasing deterministic control of primary succession on Mount St. Helens, Washington. Journal of Vegetation Science 20: 1145–1154.
- Drury, W. H. 1956. Bog flats and physiographic processes in the upper Kuskokwim River region, Alaska. Contributions from the Gray Herbarium of Harvard University 178. Harvard University, Cambridge, Massachusetts, USA.
- Dyrness, C. T., and K. Van Cleve. 1993. Control of surface soil chemistry in early-successional floodplain soils along the Tanana River. Canadian Journal of Forest Research 23: 979–994.
- Fastie, C. L. 1995. Causes and ecosystem consequences of multiple pathways of primary succession at Glacier Bay, Alaska. Ecology 76: 1899–1916.
- Gleason, H. A. 1926. The individualistic concept of the plant association. Bulletin of the Torrey Botanical Club 53: 7–26.
- Grace, J. B. 2006. Structural equation modeling in natural systems. Cambridge University Press, Cambridge, UK.
- Grace, J. B., D. R. Schoolmaster, R. Guntenspergen, A. M. Little, B. R. Mitchell, K. M. Miller, and E. W. Schweiger. 2012. Guidelines for a graph-theoretic implementation of structural equation modeling. Ecosphere 3: 1–44.
- Hinzman, L. D., L. A. Viereck, P. C. Adams, V. E. Romanovsky, and K. Yoshikawa. 2006. Climate and permafrost dynamics of the Alaskan boreal forest. Pages 39–61 in F. S. Chapin, M. W. Oswood, K. Van Cleve, L. A. Viereck, and D. L. Verbyla, editors. Alaska's changing boreal forest. Oxford University Press, New York, New York, USA.
- Hollingsworth, T. N., M. D. Walker, F. S. Chapin III, and A. Parsons. 2006. Scale-dependent environmental controls over species composition in Alaskan black spruce communities. Canadian Journal of Forest Research 36: 1781–1796.
- Hollingsworth, T. N., A. H. Lloyd, D. R. Nossov, R. W. Ruess, B. A. Charlton, and K. Kielland. 2010. Twenty-five years of vegetation change along a putative chronosequence on the Tanana River, Alaska. Canadian Journal of Forest Research 40: 1273–1287.
- Kielland, K. 2003. Snowshoe hare pellet count data in Bonanza Creek Experimental Forest, Bonanza Creek LTER. University of Alaska Fairbanks. BNZ:56, http://www.lter.uaf.edu/data_detail.cfm?datafile_pkey=56. doi:10.6073/pasta/f742a0df967b956fc59165a41e37c08b
- Kielland, K., and J. Bryant. 1998. Moose herbivory in taiga: effects on biogeochemistry and vegetation dynamics in primary succession. Oikos 82: 377–383.
- Kielland, K., J. P. Bryant, and R. W. Ruess. 2006. Mammalian herbivory, ecosystem engineering, and ecological cascades in Alaskan boreal forests. Pages 211–226 in F. S. Chapin, M. W. Oswood, K. Van Cleve, L. A. Viereck, and D. L. Verbyla, editors. Alaska's changing boreal forest. Oxford University Press, New York, New York, USA.
- Kruskal, J. B., and M. Wish. 1978. Multidimensional scaling. Sage Publications, Beverly Hills, California, USA.
- Lichter, J. 2000. Colonization constraints during primary succession on coastal Lake Michigan sand dunes. Journal of Ecology 88: 825–839.
- Lisuzzo, N. J., K. Kielland, and J. B. Jones. 2008. Hydrologic controls of nitrogen availability in a high-latitude, semi-arid floodplain. Ecoscience 15: 3.
- Marion, G. M., K. Van Cleve, C. T. Dyrness, and C. H. Black. 1993. The soil chemical environment along a primary successional sequence on the Tanana River floodplain, interior Alaska. Canadian Journal of Forest Research 23: 923–927.
- Matthews, J. A. 1992. The ecology of recently deglaciated terrain: a geoecological approach to glacier forelands and primary succession. Cambridge University Press, Cambridge, UK.
- McCune, B., and J. B. Grace. 2002. Analysis of ecological communities. MjM Software Design, Gleneden Beach, Oregon, USA.
- Morris, M. R., and J. A. Stanford. 2011. Floodplain succession and soil nitrogen accumulation on a salmon river in southwestern Kamchatka. Ecological Monographs 81: 43–61.
- Morris, F. M., and D. M. Wood. 1989. The role of lupine in succession on Mount St. Helens: facilitation or inhibition? Ecology 70: 697–703.
- Nordengren, C., A. Hofgaard, and J. P. Ball. 2003. Availability and quality of herbivore winter browse in relation to tree height and snow depth. Annales Zoologici Fennici 40: 305–314.
- Odum, E. P. 1969. The strategy of ecosystem development. Science 164: 262–270.
- Olff, H., J. Huisman, and B. F. van Tooren. 1993. Species dynamics and nutrient accumulation during early primary succession in coastal sand dunes. Journal of Ecology 81: 693–703.
- Pastor, J., R. J. Naiman, B. Dewey, and P. McInnes. 1988. Moose, microbes, and the boreal forest. BioScience 38: 770–777.
- Perry, D. A., R. Oren, and S. C. Hart. 2013. Forest ecosystems. Johns Hopkins University Press, Baltimore, Maryland, USA.
- Pinheiro, J., D. Bates, S. DebRoy, D. Sarkar, and R Core Team. 2015. nlme: linear and nonlinear mixed effects models. R package version 3.1-122. http://CRAN.R-project.org/package=nlme
- Power, M. E., D. Tilman, J. A. Estes, B. A. Menge, W. J. Bond, L. S. Mills, G. Daily, J. C. Castilla, J. Lubchenco, and R. T. Paine. 1996. Challenges in the quest for keystones. BioScience 46: 609–620.
- R Core Team. 2014. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/
- Rosseel, Y. 2012. lavaan: an R package for structural equation modeling. Journal of Statistical Software 48: 1–36.
- Ruess, R. 2005. Alder Canker Survey Initiated 2005, Bonanza Creek LTER - University of Alaska Fairbanks. BNZ:102, http://www.lter.uaf.edu/data_detail.cfm?datafile_pkey=102. doi:10.6073/pasta/4ca1af2cb76273b4b9f07adb349d4073
- Sandom, C., L. Dalby, C. Fløjgaard, W. D. Kisslin, J. Lenoir, B. Sandel, K. Trøjelsgaard, R. Ejrnæs, and J.-C. Svenning. 2013. Mammal predator and prey species richness are strongly linked at macroscales. Ecology 94: 1112–1122.
- St. John, M. G., P. J. Bellingham, L. R. Walker, K. H. Orwin, K. I. Bonner, I. A. Dickie, C. W. Morse, G. W. Yeates, and D. A. Wardle. 2012. Loss of a dominant nitrogen-fixing shrub in primary succession: consequences for plant and below-ground communities. Journal of Ecology 100: 1074–1084.
- Van Cleve, K., L. A. Viereck, and R. L. Schlentner. 1971. Accumulation of nitrogen in alder (Alnus) ecosystems near Fairbanks, Alaska. Arctic and Alpine Research 3: 101–114.
- Van Cleve, K., L. Oliver, R. Schlentner, L. A. Viereck, and C. T. Dyrness. 1983. Productivity and nutrient cycling in taiga forest ecosystems. Canadian Journal of Forest Research 13: 747–766.
- Van Cleve, K., F. S. Chapin III, C. T. Dyrness, and L. A. Viereck. 1991. Element cycling in taiga forest: state-factor control. BioScience 41: 78–88.
- Van Cleve, K., J. Yarie, R. Erickson, and C. T. Dyrness. 1993. Nitrogen mineralization and nitrification in successional ecosystems on the Tanana River floodplain, interior Alaska. Canadian Journal of Forest Research 23: 970–978.
- Van der Valk, A. G. 1981. Succession in wetlands: a Gleasonian approach. Ecology 62: 688–696.
- Viereck, L. A., K. Van Cleve, F. S. Chapin III, T. N. Hollingsworth, and R. W. Ruess. 2010. Vegetation Plots of the Bonanza Creek LTER Control Plots: Species Percent Cover (1975–2009). Bonanza Creek LTER, University of Alaska Fairbanks. BNZ:174, http://www.lter.uaf.edu/data_detail.cfm?datafile_pkey=174. doi:10.6073/pasta/17bb9a333bc648913d6a80108181481b
- Vitousek, P. M., and R. W. Howarth. 1991. Nitrogen limitation on land and in the sea: How can it occur? Biogeochemistry 13: 87–115.
- Walker, L. R., and F. S. Chapin III. 1986. Physiological controls over seedling growth in primary succession on an Alaskan floodplain. Ecology 67: 1508–1523.
- Walker, L. R., and F. S. Chapin III. 1987. Interactions among processes controlling successional change. Oikos 50: 131–135.
- Walker, L. R., and R. del Moral. 2003. Primary succession and ecosystem rehabilitation. Cambridge University Press, Cambridge, UK.
- Walker, L. R., B. D. Clarkson, W. B. Silvester, and B. R. Clarkson. 2003. Colonization dynamics and facilitative impacts of a nitrogen-fixing shrub in primary succession. Journal of Vegetation Science 14: 277–290.
- Whittaker, R. H. 1967. Gradient analysis of vegetation. Biological Reviews 42: 207–264.
- Wright, E. F., K. D. Coates, C. D. Canham, and P. Bartemucci. 1998. Species variability in growth response to light across climatic regions in northwestern British Columbia. Canadian Journal of Forest Research 28: 871–886.