Journal list menu
Community assembly and the functioning of ecosystems: how metacommunity processes alter ecosystems attributes
Corresponding Author
Mathew A. Leibold
Department of Integrative Biology, 2415 Speedway #C0930, University of Texas at Austin, Austin, Texas, 78712 USA
E-mail: [email protected]Search for more papers by this authorJonathan M. Chase
German Centre for Integrative Biodiversity Research (iDiv), Deutscher Platz, 5e 04103 Leipzig, Germany
Department of Computer Science, Martin Luther University, Halle, Germany
Search for more papers by this authorS. K. Morgan Ernest
Department of Wildlife Ecology and Conservation, 110 Newins-Ziegler Hall PO Box 110430, University of Florida, Gainesville, Florida, 84322 USA
Search for more papers by this authorCorresponding Author
Mathew A. Leibold
Department of Integrative Biology, 2415 Speedway #C0930, University of Texas at Austin, Austin, Texas, 78712 USA
E-mail: [email protected]Search for more papers by this authorJonathan M. Chase
German Centre for Integrative Biodiversity Research (iDiv), Deutscher Platz, 5e 04103 Leipzig, Germany
Department of Computer Science, Martin Luther University, Halle, Germany
Search for more papers by this authorS. K. Morgan Ernest
Department of Wildlife Ecology and Conservation, 110 Newins-Ziegler Hall PO Box 110430, University of Florida, Gainesville, Florida, 84322 USA
Search for more papers by this authorAbstract
Recent work linking community structure and ecosystem function has primarily focused on the effects of local species richness but has neglected the dispersal-dependent processes of community assembly that are ultimately involved in determining community structure and its relation to ecosystems. Here we combine simple consumer-resource competition models and metacommunity theory with discussion of case studies to outline how spatial processes within metacommunities can alter community assembly and modify expectations about how species diversity and composition influence ecosystem attributes at local scales. We argue that when community assembly is strongly limited by dispersal, this can constrain ecosystem functioning by reducing positive selection effects (reducing the probability of the most productive species becoming dominant) even though it may often also enhance complementarity (favoring combinations of species that enhance production even though they may not individually be most productive). Conversely, excess dispersal with strong source-sink relations among heterogeneous habitats can reduce ecosystem functioning by swamping local filters that would normally favor better-suited species. Ecosystem function is thus most likely maximized at intermediate levels of dispersal where both of these effects are minimized. In this scenario, we find that the selection effect is maximized, while complementarity is often reduced and local diversity may often be relatively low. Our synthesis emphasizes that it is the entire set of community assembly processes that affect the functioning of ecosystems, not just the part that determines local species richness.
Literature Cited
- Allhoff, K. T., and B. Drossel. 2016. Biodiversity and ecosystem functioning in evolving food webs. Philosophical Transactions of the Royal Society B 371: 20150281.
- Allhoff, K. T., E. M. Weiel, T. Rogge, and B. Drossel. 2015. On the interplay of speciation and dispersal: an evolutionary food web model in space. Journal of Theoretical Biology 366: 46–56.
- Amarasekare, P., and R. M. Nisbet. 2001. Spatial heterogeneity, source-sink dynamics, and the local coexistence of competing species. American Naturalist 158: 572–584.
- Andersson, M. G., M. Berga, E. S. Lindström, and S. Langenheder. 2014. The spatial structure of bacterial communities is influenced by historical environmental conditions. Ecology 95: 1134–1140.
- Baho, D. L., H. Peter, and L. J. Tranvik. 2012. Resistance and resilience of microbial communities – temporal and spatial insurance against perturbations. Environmental Microbiology 14: 2283–2292.
- Berga, M., A. J. Székely, and S. Langenheder. 2012. Effects of disturbance intensity and frequency on bacterial community composition and function. PLoS ONE 7: e36959.
- Bond, E. M., and J. M. Chase. 2002. Biodiversity and ecosystem functioning at local and regional spatial scales. Ecology Letters 5: 467–470.
- Cardinale, B. J., et al. 2012. Biodiversity loss and its impact on humanity. Nature 486: 59–67.
- Ceballos, G., P. R. Ehrlich, A. D. Barnosky, A. Garcia, R. M. Pringle, and T. M. Palmer. 2015. Accelerated modern human-induced species losses: entering the sixth mass extinction. Science Advances 1: e1400253.
- Chase, J. M., and M. A. Leibold. 2003. Ecological niches: linking classical and contemporary approaches. University of Chicago Press, Chicago, Illinois, USA.
- Cornell, H. V., and J. H. Lawton. 1992. Species interactions, local and regional processes, and limits to the richness of ecological communities: a theoretical perspective. Journal of Animal Ecology 61: 1–12.
- Cottenie, K. 2005. Integrating environmental and spatial processes in ecological community dynamics. Ecology Letters 8: 1175–1182.
- Cottenie, K., E. Michels, N. Nuytten, and L. De Meester. 2003. Zooplankton metacommunity structure: regional vs. local processes in highly interconnected ponds. Ecology 84: 991–1000.
- Daufresne, T., and L. O. Hedin. 2005. Plant coexistence depends on ecosystem nutrient cycles: extension of the resource-ratio theory. Proceedings of the National Academy of Sciences USA 102: 9212–9217.
- de Boer, M. K., H. Moor, B. Matthiessen, H. Hillebrand, and B. K. Eriksson. 2014. Dispersal restricts local biomass but promotes the recovery of metacommunities after temperature stress. Oikos 123: 762–768.
- Declerck, S. A., C. Winter, J. B. Shurin, C. A. Suttle, and B. Matthews. 2012. Effects of patch connectivity and heterogeneity on metacommunity structure of planktonic bacteria and viruses. ISME Journal 7: 533–542.
- Dornelas, M., N. J. Gotelli, B. McGill, H. Shimadzu, F. Moyes, C. Sievers, and A. E. Magurran. 2014. Assemblage time series reveal biodiversity change but not systematic loss. Science 344: 296–299.
- Elahi, R., M. I. O'Connor, J. E. K. Byrnes, J. Dunic, B. Klemens Eriksson, M. J. S. Hensel, and P. J. Kearns. 2015. Recent trends in local-scale marine biodiversity reflect community structure and human impacts. Current Biology 25: 1938–1943.
- Ernest, S. K. M., and J. H. Brown. 2001. Delayed compensation for missing keystone species by colonization. Science 292: 101–104.
- Fox, J. W. 2005. Interpreting the ‘selection effect’ of biodiversity on ecosystem function. Ecology Letters 8: 846–856.
- Fukami, T., I. A. Dickie, J. P. Wilkie, B. C. Paulus, D. Park, A. Roberts, P. K. Buchanan, and R. B. Allan. 2010. Assembly history dictates ecosystem functioning: evidence from wood decomposer communities. Ecology Letters 13: 675–684.
- Fukami, T., and P. J. Morin. 2003. Productivity-biodiversity relationships depend on the history of community assembly. Nature 424: 423–426.
- Gonzalez, A., B. J. Cardinale, G. R. H. Allington, J. Byrnes, K. A. Endsley, D. G. Brown, D. U. Hooper, F. Isbell, M. I. O'Connor, and M. Loreau. 2016. Estimating local biodiversity change: a critique of papers claiming no net loss of local diversity. Ecology 97: 1949–1960.
- Gonzalez, A., N. Mouquet, and M. Loreau. 2009. Biodiversity as spatial insurance: the effects of habitat fragmentation and dispersal on ecosystem functioning. Pages 134–146 in S. Naeem, D. E. Bunker, A. Hector, M. Loreau, and C. Perrings, editors. Biodiversity, ecosystem functioning and human wellbeing. University of Oxford Press, Oxford, UK.
10.1093/acprof:oso/9780199547951.003.0010 Google Scholar
- Grace, J. B., et al. 2016. Integrative modeling reveals mechanisms linking productivity and plant species richness. Nature 529: 390–395.
- Gross, K., and B. J. Cardinale. 2007. Does species richness drive community production or vice versa? Reconciling historical and contemporary paradigms in competitive communities. American Naturalist 170: 207–220.
- Haegeman, B., and M. Loreau. 2015. A graphical-mechanistic approach to spatial resource competition. American Naturalist 185: E1–E13.
- M. Holyoak, M. A. Leibold, and R. D. Holt, editors. 2005. Metacommunities: spatial dynamics and ecological communities. University of Chicago Press, Chicago, Illinois, USA.
- Hooper, D. U., E. C. Adair, B. J. Cardinale, J. E. K. Byrnes, B. A. Hungate, K. L. Matulich, A. Gonzalez, J. E. Duffy, L. Gamfeldt, and M. I. O'Connor. 2012. A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486: 105–108.
- Howeth, J. G., and M. A. Leibold. 2010. Species dispersal rates alter diversity and ecosystem stability in pond metacommunities. Ecology 91: 2727–2741.
- Jiang, L., Z. Pu, and D. R. Nemergut. 2008. On the importance of the negative selection effect for the relationship between biodiversity and ecosystem functioning. Oikos 117: 488–493.
- Kunin, W. E. 1998. Biodiversity at the edge: a test of the importance of spatial ‘mass effects’ in the Rothamsted Park grass experiments. Proceedings of the National Academy of Sciences USA 95: 207–212.
- Leibold, M. A. 1998. Similarity and local coexistence of species in regional biotas. Evolutionary Ecology 1: 73–95.
- Leibold, M. A., M. Holyoak, N. Mouquet, P. Amarasekare, J. M. Chase, M. F. Hoopes, R. D. Holt, et al. 2004. The metacommunity concept: a framework for multi-scale community ecology. Ecology Letters 7: 601–613.
- Leibold, M. A., and J. Norberg. 2004. Biodiversity in metacommunities: Plankton as complex adaptive systems? Limnology and Oceanography 49: 1278–1289.
- Lindström, E. S., and Ö. Östman. 2011. The importance of dispersal for bacterial community composition and functioning. PLoS ONE 6: e25883.
- Livingston, G., M. Matias, V. Calcagno, C. Barbera, M. Combe, M. A. Leibold, and N. Mouquet. 2012. Competition-colonization dynamics in experimental bacterial metacommunities. Nature Communications 3: 1234.
- Loreau, M., and A. Hector. 2001. Partitioning selection and complementarity in biodiversity experiments. Nature 412: 72–76.
- Loreau, M., and N. Mouquet. 1999. Immigration and the maintenance of local species diversity. American Naturalist 154: 427–440.
- Loreau, M., N. Mouquet, and A. Gonzalez. 2003. Biodiversity as spatial insurance in heterogeneous landscapes. Proceedings of the National Academy of Sciences USA 100: 12765–12770.
- Maron, J. L., J. Klironomos, L. Waller, and R. M. Callaway. 2014. Invasive plants escape from suppressive soil biota at regional scales. Journal of Ecology 102: 19–27.
- Mouquet, N., and M. Loreau. 2003. Community patterns in source-sink metacommunities. American Naturalist 162: 544–557.
- Mouquet, N., J. L. Moore, and M. Loreau. 2002. Plant species richness and community productivity: Why the mechanism that promotes coexistence matters. Ecology Letters 5: 56–65.
- Murphy, G. E. P., and T. N. Romanuk. 2014. A meta-analysis of declines in local species richness from human disturbances. Ecology and Evolution 4: 91–103.
- Naeem, S., J. E. Duffy, and E. Zavaleta. 2012. The functions of biological diversity in an age of extinction. Science 336: 1401–1406.
- Naeslund, B., and J. Norberg. 2006. Ecosystem consequences of the regional species pool. Oikos 115: 504–512.
- Newbold, T., L. N. Hudson, S. L. L. Hill, S. Contu, I. Lysenko, R. A. Senior, L. Börger, et al. 2015. Global effects of land use on local terrestrial biodiversity. Nature 520: 45–50.
- Ozinga, W. A., J. H. J. Schaminée, R. M. Bekker, S. Bonn, P. Poschlod, O. Tackenberg, J. Bakker, and J. M. van Groenendael. 2005. Predictability of plant species composition from environmental conditions is constrained by dispersal limitation. Oikos 108: 555–561.
- Petermann, J. S., A. J. F. Fergus, C. Roscher, L. A. Turnbull, A. Weigelt, and B. Schmid. 2010. Biology, chance, or history? The predictable reassembly of temperate grassland communities. Ecology 91: 408–421.
- Poisot, T., N. Mouquet, and D. Gravel. 2013. Trophic complementarity drives the biodiversity ecosystem functioning relationship in food webs. Ecology Letters 16: 853861.
- Ptacnik, R., S. D. Moorthi, and H. Hillebrand. 2010. Hutchinson reversed, or why there need to be so many species. Pages 1–43 in G. Woodward, editor. Advances in ecological research, vol 43: integrative ecology: from molecules to ecosystems. Elsevier Academic Press, San Diego, California, USA.
10.1016/B978-0-12-385005-8.00001-0 Google Scholar
- Ryabov, A. B., and B. Blasius. 2011. A graphical theory of competition on spatial resource gradients. Ecology Letters 14: 220–228.
- Rychtecká, T., V. Lanta, I. Weiterová, and J. Lepš. 2014. Sown species richness and realized diversity can influence functioning of plant communities differently. Naturwissenschaften 101: 637–644.
- E.-D. Schulze, and H. A. Mooney, editors. 1994. Biodiversity and ecosystem function. Springer-Verlag, Berlin, Germany.
10.1007/978-3-642-58001-7_24 Google Scholar
- Shanafelt, D. W., U. Dieckmann, M. Jonas, O. Franklin, M. Loreau, and C. Perrings. 2015. Biodiversity, productivity, and the spatial insurance hypothesis revisited. Journal of Theoretical Biology 380: 426–435.
- Shurin, J. B., J. E. Havel, M. A. Leibold, and B. Pinel-Alloul. 2000. Local and regional zooplankton species richness: a scale-independent test for saturation. Ecology 81: 3062.
- Soininen, J. 2014. A quantitative analysis of species sorting across organisms and ecosystems. Ecology 95: 3284–3292.
- Srivastava, D. S., and M. Vellend. 2005. Biodiversity-ecosystem function research: Is it relevant to conservation? Annual Review of Ecology, Evolution, and Systematics 36: 267–294.
- Supp, S. R., and S. K. M. Ernest. 2014. Species-level and community-level responses to disturbance: a cross-community analysis. Ecology 95: 1717–1723.
- Symons, C., and S. Arnott. 2013. Regional zooplankton dispersal provides spatial insurance for ecosystem function. Global Change Biology 19: 1610–1619.
- Thibault, K. M., S. K. M. Ernest, and J. H. Brown. 2010. Redundant or complementary? Impact of a colonizing species on community structure and function. Oikos 119: 1719–1726.
- Thompson, P. L., and A. Gonzalez. 2016. Ecosystem multifunctionality in metacommunities. Ecology 97: 267–2879.
- Tilman, D. 1982. Resource competition and community structure. Princeton University Press, Princeton, New Jersey, USA.
- Tilman, D., F. Isbell, and J. M. Cowles. 2014. Biodiversity and ecosystem functioning. Annual Reviews of Ecology, Evolution and Systematics 45: 471–493.
- Tilman, D., C. L. Lehman, and J. M. Thomson. 1997. Plant diversity and ecosystem productivity: theoretical considerations. Proceedings of the National Academy of Sciences USA 94: 1857–1861.
- Vellend, M., L. Baeten, I. H. Myers-Smith, S. C. Elmendorf, R. Beausejour, C. D. Brown, P. De Frenne, K. Verheyen, and S. Wipf. 2013. Global meta-analysis reveals no net change in local-scale plant biodiversity over time. Proceedings of the National Academy of Sciences USA 110: 19456–19459.
- Verreydt, D., L. De Meester, E. Decaestecker, M. J. Villena, K. Van Der Gucht, P. Vannormelingen, et al. 2012. Dispersal-mediated trophic interactions can generate apparent patterns of dispersal limitation in aquatic metacommunities. Ecology Letters 15: 218–226.
- Wright, A., M. Bernhardt-Römermann, D. Craven, A. Ebeling, J. Engel, J. Hines, and N. Eisenhauer. 2014. Local-scale changes in plant diversity: reassessments and implications for biodiversity–ecosystem function experiments. Proceedings of Peerage of Science 1: e6.