Journal list menu
Estimation and simulation of foraging trips in land-based marine predators
Corresponding Author
Théo Michelot
University of Sheffield, Sheffield, UK
E-mail: [email protected]Search for more papers by this authorSophie Bestley
Australian Antarctic Division, Department of Environment, Kingston, Tasmania, Australia
Institute for Marine and Antarctic Studies, Hobart, Tasmania, Australia
Search for more papers by this authorIan D. Jonsen
Macquarie University, Sydney, New South Wales, Australia
Search for more papers by this authorTheoni Photopoulou
Nelson Mandela Metropolitan University, Port Elizabeth, South Africa
University of Cape Town, Rondebosch, South Africa
Search for more papers by this authorToby A. Patterson
CSIRO Oceans and Atmosphere, Hobart, Tasmania, Australia
Search for more papers by this authorCorresponding Author
Théo Michelot
University of Sheffield, Sheffield, UK
E-mail: [email protected]Search for more papers by this authorSophie Bestley
Australian Antarctic Division, Department of Environment, Kingston, Tasmania, Australia
Institute for Marine and Antarctic Studies, Hobart, Tasmania, Australia
Search for more papers by this authorIan D. Jonsen
Macquarie University, Sydney, New South Wales, Australia
Search for more papers by this authorTheoni Photopoulou
Nelson Mandela Metropolitan University, Port Elizabeth, South Africa
University of Cape Town, Rondebosch, South Africa
Search for more papers by this authorToby A. Patterson
CSIRO Oceans and Atmosphere, Hobart, Tasmania, Australia
Search for more papers by this authorAbstract
The behavior of colony-based marine predators is the focus of much research globally. Large telemetry and tracking data sets have been collected for this group of animals, and are accompanied by many empirical studies that seek to segment tracks in some useful way, as well as theoretical studies of optimal foraging strategies. However, relatively few studies have detailed statistical methods for inferring behaviors in central place foraging trips. In this paper we describe an approach based on hidden Markov models, which splits foraging trips into segments labeled as “outbound”, “search”, “forage”, and “inbound”. By structuring the hidden Markov model transition matrix appropriately, the model naturally handles the sequence of behaviors within a foraging trip. Additionally, by structuring the model in this way, we are able to develop realistic simulations from the fitted model. We demonstrate our approach on data from southern elephant seals (Mirounga leonina) tagged on Kerguelen Island in the Southern Ocean. We discuss the differences between our 4-state model and the widely used 2-state model, and the advantages and disadvantages of employing a more complex model.
Supporting Information
Filename | Description |
---|---|
ecy1880-sup-0001-AppendixS1.pdfPDF document, 4.9 MB | |
ecy1880-sup-0002-MetadataS1.pdfPDF document, 75.6 KB | |
ecy1880-sup-0003-DataS1.zipZip archive, 159.6 KB |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
Literature Cited
- Abecassis, M., I. Senina, P. Lehodey, P. Gaspar, D. Parker, G. Balazs, and J. Polovina. 2013. A model of loggerhead sea turtle (Caretta caretta) habitat and movement in the oceanic north pacific. PLoS ONE 8: e73274.
- Ashmole, N. P. 1963. The regulation of numbers of tropical oceanic birds. Ibis 103: 458–473.
10.1111/j.1474-919X.1963.tb06766.x Google Scholar
- Auger-Méthé, M., A. E. Derocher, C. A. DeMars, M. J. Plank, E. A. Codling, and M. A. Lewis. 2016. Evaluating random search strategies in three mammals from distinct feeding guilds. Journal of Animal Ecology 85: 1411–1421.
- Bell, W. J. 1990. Central place foraging. Pages 171–187 in Searching behaviour. Springer, Dordrecht, The Netherlands.
10.1007/978-94-011-3098-1_12 Google Scholar
- Bestley, S., I. D. Jonsen, M. A. Hindell, C. Guinet, and J.-B. Charrassin. 2013. Integrative modelling of animal movement: incorporating in situ habitat and behavioural information for a migratory marine predator. Proceedings of the Royal Society of London B: Biological Sciences 280: 20122262.
- Biuw, M., et al. 2007. Variations in behavior and condition of a southern ocean top predator in relation to in situ oceanographic conditions. Proceedings of the National Academy of Sciences 104: 13705–13710.
- Bivand, R., and N. Lewin-Koh. 2016. maptools: Tools for Reading and Handling Spatial Objects. https://CRAN.R-project.org/package=maptools. R package version 0.8-39.
- Boyd, C., A. E. Punt, H. Weimerskirch, and S. Bertrand. 2014. Movement models provide insights into variation in the foraging effort of central place foragers. Ecological Modelling 286: 13–25.
- Breed, G. A., I. D. Jonsen, R. A. Myers, W. D. Bowen, and M. L. Leonard. 2009. Sex-specific, seasonal foraging tactics of adult grey seals (Halichoerus grypus) revealed by state-space analysis. Ecology 90: 3209–3221.
- Breed, G. A., E. A. Golson, and M. T. Tinker. 2016. Predicting animal home-range structure and transitions using a multistate ornstein-uhlenbeck biased random walk. Ecology 98: 32–47.
- Carrick, R., S. Csordas, S. E. Ingham, and K. Keith. 1962. Studies on the southern elephant seal, Mirounga leonina (L.). iii. the annual cycle in relation to age and sex. Wildlife Research 7: 119–160.
10.1071/CWR9620119 Google Scholar
- Codling, E., M. Plank, and S. Benhamou. 2008. Random walk models in biology. Journal of the Royal Society Interface 5: 813–834.
- Croxall, J. P., S. H. Butchart, B. Lascelles, A. J. Stattersfield, B. Sullivan, A. Symes, and P. Taylor. 2012. Seabird conservation status, threats and priority actions: a global assessment. Bird Conservation International 22: 1–34.
- DeRuiter, S. L., R. Langrock, T. Skirbutas, J. A. Goldbogen, J. Calambokidis, A. S. Friedlaender, and B. L. Southall. 2017. A multivariate mixed hidden Markov model for blue whale behaviour and responses to sound exposure. Annals of Applied Statistics 11: 362–392.
- Eddelbuettel, D., R. François, J. Allaire, J. Chambers, D. Bates, and K. Ushey. 2011. Rcpp: seamless R and C++ integration. Journal of Statistical Software 40: 1–18.
- Fauchald, P., and T. Tveraa. 2003. Using first-passage time in the analysis of area-restricted search and habitat selection. Ecology 84: 282–288.
- Fauchald, P., and T. Tveraa. 2006. Hierarchical patch dynamics and animal movement pattern. Oecologia 149: 383–395.
- Guan, W., J. Cao, Y. Chen, and M. Cieri. 2013. Impacts of population and fishery spatial structures on fishery stock assessment. Canadian Journal of Fisheries and Aquatic Sciences 70: 1178–1189.
- Hamer, D., S. Goldsworthy, D. Costa, S. Fowler, B. Page, and M. Sumner. 2013. The endangered Australian sea lion extensively overlaps with and regularly becomes by-catch in demersal shark gill-nets in South Australian shelf waters. Biological Conservation 157: 386–400.
- Hays, G. C., et al. 2016. Key questions in marine megafauna movement ecology. Trends in Ecology and Evolution 31: 463–475.
- Hazen, E. L., et al. 2013. Predicted habitat shifts of pacific top predators in a changing climate. Nature Climate Change 3: 234–238.
- Higginson, A. D., and A. I. Houston. 2015. The inuence of the food-predation trade-off on the foraging behaviour of central-place foragers. Behavioral Ecology and Sociobiology 69: 551–561.
- Hijmans, R. J. 2016. geosphere: Spherical Trigonometry. https://CRAN.R-project.org/package=geosphere. R package version 1.5-5.
- Hindell, M. A., and H. R. Burton. 1988. Seasonal haul-out patterns of the southern elephant seal (Mirounga leonina L.), at Macquarie Island. Journal of Mammalogy 69: 81–88.
- Hindell, M. A., et al. 2016. Circumpolar habitat use in the southern elephant seal: implications for foraging success and population trajectories. Ecosphere 7: e01213.
- Jabour, J., M.-A. Lea, S. D. Goldsworthy, G. Melcher, K. Sykes, and M. A. Hindell. 2016. Marine telemetry and the conservation and management of risk to seal species in Canada and Australia. Ocean Development and International Law 47: 255–271.
- Jonsen, I. 2016. Joint estimation over multiple individuals improves behavioural state inference from animal movement data. Scientific Reports 6: 20625.
- Jonsen, I. D., J. M. Flemming, and R. A. Myers. 2005. Robust state-space modeling of animal movement data. Ecology 86: 2874–2880.
- Jonsen, I., M. Basson, S. Bestley, M. Bravington, T. Patterson, M. W. Pedersen, R. Thomson, U. H. Thygesen, and S. Wotherspoon. 2013. State-space models for bio-loggers: a methodological road map. Deep Sea Research Part II: Topical Studies in Oceanography 88: 34–46.
- Kanagaraj, R., T. Wiegand, S. Kramer-Schadt, and S. P. Goyal. 2013. Using individual-based movement models to assess inter-patch connectivity for large carnivores in fragmented landscapes. Biological Conservation 167: 298–309.
- Kareiva, P., and G. Odell. 1987. Swarms of predators exhibit “prey taxis” if individual predators use area-restricted search. American Naturalist 130: 233–270.
- Kristensen, K., A. Nielsen, C. W. Berg, H. Skaug, and B. M. Bell. 2016. TMB: Automatic differentiation and Laplace approximation. Journal of Statistical Software 70: 1–21.
- Labrousse, S., et al. 2015. Winter use of sea ice and ocean water mass habitat by southern elephant seals: The length and breadth of the mystery. Progress in Oceanography 137: 52–68.
- Langrock, R., R. King, J. Matthiopoulos, L. Thomas, D. Fortin, and J. M. Morales. 2012. Flexible and practical modeling of animal telemetry data: hidden Markov models and extensions. Ecology 93: 2336–2342.
- Langrock, R., J. G. C. Hopcraft, P. G. Blackwell, V. Goodall, R. King, M. Niu, T. A. Patterson, M. W. Pedersen, A. Skarin, and R. S. Schick. 2014. Modelling group dynamic animal movement. Methods in Ecology and Evolution 5: 190–199.
- Langrock, R., T. Kneib, A. Sohn, and S. L. DeRuiter. 2015. Nonparametric inference in hidden Markov models using P-splines. Biometrics 71: 520–528.
- Leos-Barajas, V., T. Photopoulou, R. Langrock, T. A. Patterson, Y. Watanabe, M. Murgatroyd, and Y. P. Papastamatiou. 2017. Analysis of animal accelerometer data using hidden Markov models. Methods in Ecology and Evolution 8: 161–173.
- Lonergan, M., C. Duck, D. Thompson, B. Mackey, L. Cunningham, and I. Boyd. 2007. Using sparse survey data to investigate the declining abundance of British harbour seals. Journal of Zoology 271: 261–269.
- Martin, G. R., and R. Crawford. 2015. Reducing bycatch in gillnets: a sensory ecology perspective. Global Ecology and Conservation 3: 28–50.
- Matthiopoulos, J. 2003. Model-supervised kernel smoothing for the estimation of spatial usage. Oikos 102: 367–377.
- McCann, T. 1980. Population structure and social organization of southern elephant seals, Mirounga leonina (L.). Biological Journal of the Linnean Society 14: 133–150.
- McClintock, B. T., R. King, L. Thomas, J. Matthiopoulos, B. J. McConnell, and J. M. Morales. 2012. A general discrete-time modeling framework for animal movement using multistate random walks. Ecological Monographs 82: 335–349.
- McKellar, A. E., R. Langrock, J. R. Walters, and D. C. Kesler. 2015. Using mixed hidden Markov models to examine behavioral states in a cooperatively breeding bird. Behavioral Ecology 26: 148–157.
- Michelot, T., R. Langrock, and T. A. Patterson. 2016. moveHMM: an R package for the statistical modelling of animal movement data using hidden Markov models. Methods in Ecology and Evolution 7: 1308–1315.
- Morales, J. M., D. T. Haydon, J. Frair, K. E. Holsinger, and J. M. Fryxell. 2004. Extracting more out of relocation data: building movement models as mixtures of random walks. Ecology 85: 2436–2445.
- New, L. F., et al. 2014. Using short-term measures of behaviour to estimate long-term fitness of southern elephant seals. Marine Ecology Progress Series 496: 99–108.
- Olsson, O., and A. Bolin. 2014. A model for habitat selection and species distribution derived from central place foraging theory. Oecologia 175: 537–548.
- Oppel, S., et al. 2015. Foraging distribution of a tropical seabird supports ashmole's hypothesis of population regulation. Behavioral Ecology and Sociobiology 69: 915–926.
- Pante, E., and B. Simon-Bouhet. 2013. marmap: a package for importing, plotting and analyzing bathymetric and topographic data in R. PLoS ONE 8: e73051.
- Patrick, S. C., S. Bearhop, D. Grémillet, A. Lescroël, W. J. Grecian, T. W. Bodey, K. C. Hamer, E. Wakefield, M. Le Nuz, and S. C. Votier. 2014. Individual differences in searching behaviour and spatial foraging consistency in a central place marine predator. Oikos 123: 33–40.
- Patterson, T. A., L. Thomas, C. Wilcox, O. Ovaskainen, and J. Matthiopoulos. 2008. State-space models of individual animal movement. Trends in Ecology and Evolution 23: 87–94.
- Patterson, T. A., A. Parton, R. Langrock, P. G. Blackwell, L. Thomas and R. King. 2016. Statistical modelling of animal movement: a myopic review and a discussion of good practice. arXiv 1603.07511.
- Peel, D., and N. M. Good. 2011. A hidden Markov model approach for determining vessel activity from vessel monitoring system data. Canadian Journal of Fisheries and Aquatic Sciences 68: 1252–1264.
- Perry, A. L., P. J. Low, J. R. Ellis, and J. D. Reynolds. 2005. Climate change and distribution shifts in marine fishes. Science 308: 1912–1915.
- Photopoulou, T., M. A. Fedak, J. Matthiopoulos, B. McConnell, and P. Lovell. 2015. The generalized data management and collection protocol for conductivity-temperature-depth satellite relay data loggers. Animal Biotelemetry 3: 1.
10.1186/s40317-015-0053-8 Google Scholar
- Pinaud, D., and H. Weimerskirch. 2005. Scale-dependent habitat use in a long-ranging central place predator. Journal of Animal Ecology 74: 852–863.
- Raymond, B., et al. 2015. Important marine habitat off east Antarctica revealed by two decades of multi-species predator tracking. Ecography 38: 121–129.
- Russell, D. J., B. McConnell, D. Thompson, C. Duck, C. Morris, J. Harwood, and J. Matthiopoulos. 2013. Uncovering the links between foraging and breeding regions in a highly mobile mammal. Journal of Applied Ecology 50: 499–509.
- Schick, R. S., et al. 2013. Estimating resource acquisition and at-sea body condition of a marine predator. Journal of Animal Ecology 82: 1300–1315.
- Slip, D. J., and H. R. Burton. 1999. Population status and seasonal haulout patterns of the southern elephant seal (Mirounga leonina) at heard island. Antarctic Science 11: 38–47.
- Staniland, I., I. Boyd, and K. Reid. 2007. An energy-distance trade-off in a central-place forager, the Antarctic fur seal (Arctocephalus gazella). Marine Biology 152: 233–241.
- Stehfest, K. M., T. A. Patterson, A. Barnett, and J. M. Semmens. 2015. Markov models and network analysis reveal sex-specific differences in the space-use of a coastal apex predator. Oikos 124: 307–318.
- Towner, A. V., V. Leos-Barajas, R. Langrock, R. S. Schick, M. J. Smale, T. Kaschke, O. J. Jewell, and Y. P. Papastamatiou. 2016. Sex-specific and individual preferences for hunting strategies in white sharks. Functional Ecology 30: 1397–1407.
- Trathan, P., J. Forcada, and E. Murphy. 2007. Environmental forcing and southern ocean marine predator populations: effects of climate change and variability. Philosophical Transactions of the Royal Society of London B: Biological Sciences 362: 2351–2365.
- Vermard, Y., E. Rivot, S. Mahévas, P. Marchal, and D. Gascuel. 2010. Identifying fishing trip behaviour and estimating fishing effort from VMS data using Bayesian hidden Markov models. Ecological Modelling 221: 1757–1769.
- Wakefield, E. D., R. A. Phillips, J. Matthiopoulos, A. Fukuda, H. Higuchi, G. J. Marshall, and P. N. Trathan. 2009. Wind field and sex constrain the flight speeds of central-place foraging albatrosses. Ecological Monographs 79: 663–679.
- Walker, E., and N. Bez. 2010. A pioneer validation of a state-space model of vessel trajectories (VMS) with observers data. Ecological Modelling 221: 2008–2017.
- Zucchini, W., I. L. MacDonald, and R. Langrock. 2016. Hidden Markov models for time series: an introduction using R. Second edition. Chapman and Hall/CRC, Boca Raton, Florida, USA.
10.1201/b20790 Google Scholar