Journal list menu
Species co-occurrence networks: Can they reveal trophic and non-trophic interactions in ecological communities?
Corresponding Author
Mara A. Freilich
Department of Earth, Atmospheric and Planetary Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139 USA
Department of Physical Oceanography, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, 02543 USA
Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, C.P. 6513677 Santiago, Chile
E-mail: [email protected]Search for more papers by this authorEvie Wieters
Estación Costera de Investigaciones Marinas, Departamento de Ecología, Center for Marine Conservation, Pontificia Universidad Católica de Chile, Santiago, Chile
Search for more papers by this authorBernardo R. Broitman
Centro de Estudios Avanzados en Zonas Áridas, Ossandon 877, Coquimbo, Chile
Departamento de Biología Marina, Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo, Chile
Search for more papers by this authorPablo A. Marquet
Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, C.P. 6513677 Santiago, Chile
Instituto de Ecología y Biodiversidad (IEB), Las Palmeras 3425, Santiago, Chile
Instituto de Sistemas Complejos de Valparaíso (ISCV), Artillería 470, Cerro Artillería, Valparaiso, Chile
Laboratorio Internacional en Cambio Global (LINCGlobal), Centro de Cambio Global (PUCGlobal), Pontificia Universidad Catolica de Chile, Alameda 340, C.P. 6513677 Santiago, Chile
The Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico, 87501 USA
Search for more papers by this authorSergio A. Navarrete
Estación Costera de Investigaciones Marinas, Departamento de Ecología, Center for Marine Conservation, Pontificia Universidad Católica de Chile, Santiago, Chile
Laboratorio Internacional en Cambio Global (LINCGlobal), Centro de Cambio Global (PUCGlobal), Pontificia Universidad Catolica de Chile, Alameda 340, C.P. 6513677 Santiago, Chile
Search for more papers by this authorCorresponding Author
Mara A. Freilich
Department of Earth, Atmospheric and Planetary Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139 USA
Department of Physical Oceanography, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, 02543 USA
Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, C.P. 6513677 Santiago, Chile
E-mail: [email protected]Search for more papers by this authorEvie Wieters
Estación Costera de Investigaciones Marinas, Departamento de Ecología, Center for Marine Conservation, Pontificia Universidad Católica de Chile, Santiago, Chile
Search for more papers by this authorBernardo R. Broitman
Centro de Estudios Avanzados en Zonas Áridas, Ossandon 877, Coquimbo, Chile
Departamento de Biología Marina, Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo, Chile
Search for more papers by this authorPablo A. Marquet
Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, C.P. 6513677 Santiago, Chile
Instituto de Ecología y Biodiversidad (IEB), Las Palmeras 3425, Santiago, Chile
Instituto de Sistemas Complejos de Valparaíso (ISCV), Artillería 470, Cerro Artillería, Valparaiso, Chile
Laboratorio Internacional en Cambio Global (LINCGlobal), Centro de Cambio Global (PUCGlobal), Pontificia Universidad Catolica de Chile, Alameda 340, C.P. 6513677 Santiago, Chile
The Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico, 87501 USA
Search for more papers by this authorSergio A. Navarrete
Estación Costera de Investigaciones Marinas, Departamento de Ecología, Center for Marine Conservation, Pontificia Universidad Católica de Chile, Santiago, Chile
Laboratorio Internacional en Cambio Global (LINCGlobal), Centro de Cambio Global (PUCGlobal), Pontificia Universidad Catolica de Chile, Alameda 340, C.P. 6513677 Santiago, Chile
Search for more papers by this authorAbstract
Co-occurrence methods are increasingly utilized in ecology to infer networks of species interactions where detailed knowledge based on empirical studies is difficult to obtain. Their use is particularly common, but not restricted to, microbial networks constructed from metagenomic analyses. In this study, we test the efficacy of this procedure by comparing an inferred network constructed using spatially intensive co-occurrence data from the rocky intertidal zone in central Chile to a well-resolved, empirically based, species interaction network from the same region. We evaluated the overlap in the information provided by each network and the extent to which there is a bias for co-occurrence data to better detect known trophic or non-trophic, positive or negative interactions. We found a poor correspondence between the co-occurrence network and the known species interactions with overall sensitivity (probability of true link detection) equal to 0.469, and specificity (true non-interaction) equal to 0.527. The ability to detect interactions varied with interaction type. Positive non-trophic interactions such as commensalism and facilitation were detected at the highest rates. These results demonstrate that co-occurrence networks do not represent classical ecological networks in which interactions are defined by direct observations or experimental manipulations. Co-occurrence networks provide information about the joint spatial effects of environmental conditions, recruitment, and, to some extent, biotic interactions, and among the latter, they tend to better detect niche-expanding positive non-trophic interactions. Detection of links (sensitivity or specificity) was not higher for well-known intertidal keystone species than for the rest of consumers in the community. Thus, as observed in previous empirical and theoretical studies, patterns of interactions in co-occurrence networks must be interpreted with caution, especially when extending interaction-based ecological theory to interpret network variability and stability. Co-occurrence networks may be particularly valuable for analysis of community dynamics that blends interactions and environment, rather than pairwise interactions alone.
Supporting Information
Filename | Description |
---|---|
ecy2142-sup-0001-AppendixS1.pdfPDF document, 602.2 KB |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
Literature Cited
- Aguilera, M. A., and S. A. Navarrete. 2012. Interspecific competition for shelters in territorial and gregarious intertidal grazers: consequences for individual behaviour. PLoS ONE 7: e46205.
- Aiken, C. M., and S. A. Navarrete. 2014. Coexistence of competitors in marine metacommunities: environmental variability, edge effects, and the dispersal niche. Ecology 95: 2289–2302.
- Allesina, S., and M. Pascual. 2008. Network structure, predator-prey modules, and stability in large food webs. Theoretical Ecology 1: 55–64.
- Araújo, M. B., A. Rozenfeld, C. Rahbek, and P. A. Marquet. 2011. Using species co-occurrence networks to assess the impacts of climate change. Ecography 34: 897–908.
- Azaele, S., R. Muneepeerakul, A. Rinaldo, and I. Rodriguez-Iturbe. 2010. Inferring plant ecosystem organization from species occurrences. Journal of Theoretical Biology 262: 323–329.
- Bascompte, J., and P. Jordano. 2014. Mutualistic networks. Princeton University Press, Princeton, New Jersey, USA.
- Berkley, H. A., B. E. Kendall, S. Mitarai, and D. A. Siegel. 2010. Turbulent dispersal promotes species coexistence. Ecology Letters 13: 360–371.
- Berlow, E. L. 1999. Strong effects of weak interactions in ecological communities. Nature 398: 330–334.
- Berlow, E. L., and S. A. Navarrete. 1997. Spatial and temporal variation in rocky intertidal community organization: lessons from repeating field experiments. Journal of Experimental Marine Biology and Ecology 214: 195–229.
- Berlow, E. L., et al. 2004. Interaction strengths in food webs: issues and opportunities. Journal of Animal Ecology 73: 585–598.
- Borthagaray, A. I., M. Arim, and P. A. Marquet. 2014. Inferring species roles in metacommunity structure from species co-occurrence networks. Proceedings of the Royal Society B 281: 20141425.
- Branch, G. M., and C. N. Steffani. 2004. Can we predict the effects of alien species? A case-history of the invasion of South Africa by Mytilus galloprovincialis (Lamarck). Journal of Experimental Marine Biology and Ecology 300: 189–215.
- Broitman, B. R., S. A. Navarrete, F. Smith, and S. D. Gaines. 2001. Geographic variation of southeastern Pacific intertidal communities. Marine Ecology Progress Series 224: 21–34.
- Broitman, B. R., F. Veliz, T. Manzur, E. A. Wieters, G. R. Finke, P. A. Fornes, N. Valdivia, and S. A. Navarrete. 2011. Geographic variation in diversity of wave exposed rocky intertidal communities along central Chile. Revista Chilena de Historia Natural 84: 143–154.
- Camus, P. A., K. Daroch, and L. F. Opazo. 2008. Potential for omnivory and apparent intraguild predation in rocky intertidal herbivore assemblages from northern Chile. Marine Ecology Progress Series 361: 35–45.
- Camus, P. A., P. A. Arancibia, and I. Ávila-Thieme. 2013. A trophic characterization of intertidal consumers on Chilean rocky shores. Revista de Biología Marina Y Oceanografía 48: 431–450.
- Castilla, J. C. 1999. Coastal marine communities: trends and perspectives from human-exclusion experiments. Trends in Ecology and Evolution 14: 280–283.
- Castilla, J. C., and L. R. Durán. 1985. Human exclusion from the rocky intertidal zone of central Chile: the effects on Concholepas concholepas (Gastropoda). Oikos 39: 1–399.
- Cazelles, K., M. B. Araújo, N. Mouquet, and D. Gravel. 2016. A theory for species co-occurrence in interaction networks. Theoretical Ecology 9: 39–48.
- Chase, J. M. 2010. Stochastic community assembly causes higher biodiversity in more productive environments. Science 328: 1388–1391.
- Connell, J. H. 1961. The influence of interspecific competition and other factors on the distribution of the barnacle Chthamalus stellatus. Ecology 42: 710–723.
- de Bello, F., et al. 2012. Functional species pool framework to test for biotic effects on community assembly. Ecology 93: 2263–2273.
- Diamond, J. M. 1975. Assembly of species communities. Pages 342–444 in M. L. Cody and J. M. Diamond, editors. Ecology and evolution of communities. Belknap Press, Cambridge, Massachusetts, USA.
- Dunne, J. A., R. J. Williams, and N. D. Martinez. 2002. Network structure and biodiversity loss in food webs: robustness increases with connectance. Ecology Letters 5: 558–567.
- Dunne, J. A., R. J. Williams, N. D. Martinez, R. A. Wood, and D. H. Erwin. 2008. Compilation and network analyses of Cambrian food webs. PLoS Biology 5: e102.
- Faust, K., L. Lahti, D. Gonze, W. M. de Vos, and J. Raes. 2015. Metagenomics meets time series analysis: unraveling microbial community dynamics. Current Opinion in Microbiology 25: 56–66.
- Faust, K., and J. Raes. 2012. Microbial interactions: from networks to models. Nature Reviews Microbiology 10: 538–550.
- Fuhrman, J. A., J. A. Cram, and D. M. Needham. 2015. Marine microbial community dynamics and their ecological interpretation. Nature Reviews Microbiology 13: 133–146.
- González-Salazar, C., C. R. Stephens, and P. A. Marquet. 2013. Comparing the relative contributions of biotic and abiotic factors as mediators of species’ distributions. Ecological Modelling 248: 57–70.
- Gotelli, N. J., and G. R. Graves. 1996. Null models in ecology. Smithsonian Institution Press, Washington, D.C., USA.
- Hastings, A., J. E. Byers, J. A. Crooks, K. Cuddington, C. G. Jones, J. G. Lambrinos, T. S. Talley, and W. G. Wilson. 2007. Ecosystem engineering in space and time. Ecology Letters 10: 153–164.
- Holt, R. D., and M. B. Bonsall. 2017. Apparent competition. Annual Review of Ecology, Evolution, and Systematics 48: 447–471.
- Jones, C. G., J. H. Lawton, and M. Shachak. 1994. Organisms as ecosystem engineers. Oikos 69: 373–386.
- Kéfi, S., E. L. Berlow, E. A. Wieters, L. N. Joppa, S. A. Wood, U. Brose, and S. A. Navarrete. 2015. Network structure beyond food webs: mapping non-trophic and trophic interactions on Chilean rocky shores. Ecology 96: 291–303.
- Kéfi, S., V. Miele, E. A. Wieters, S. A. Navarrete, and E. L. Berlow. 2016. How structured is the entangled bank? The surprisingly simple organization of multiplex ecological networks leads to increased persistence and resilience. PLoS Biology 14: e1002527.
- Lopez, D. N., P. A. Camus, N. Valdivia, and S. A. Estay. 2017. High temporal variability in the occurrence of consumer-resource interactions in ecology networks. Oikos 126: 1699–1707.
- Menge, B. A., E. L. Berlow, C. A. Blanchette, S. A. Navarrete, and S. B. Yamada. 1994. The Keystone species concept: variation in interaction strength in a rocky intertidal habitat. Ecological Monographs 64: 249–286.
- Menge, B. A., C. Blanchette, P. Raimondi, T. Freidenburg, S. Gaines, J. Lubchenco, D. Lohse, G. Hudson, M. Foley, and J. Pamplin. 2004. Species interaction strength: testing model predictions along an upwelling gradient. Ecological Monographs 74: 663–684.
- Montoya, J. M., and R. V. Solé. 2002. Small world patterns in food webs. Journal of Theoretical Biology 214: 405–412.
- Morales-Castilla, I., M. G. Matias, D. Gravel, and M. B. Araujo. 2015. Inferring biotic interactions from proxies. Trends in Ecology & Evolution 30: 347–356.
- Navarrete, S. A., and J. C. Castilla. 1990. Barnacle walls as mediators of intertidal mussel recruitment: effects of patch size on the utilization of space. Marine Ecology Progress Series. Oldendorf 68: 113–119.
- Navarrete, S. A., and J. C. Castilla. 2003. Experimental determination of predation intensity in an intertidal predator guild: dominant versus subordinate prey. Oikos 100: 251–262.
- Navarrete, S. A., E. A. Wieters, B. R. Broitman, and J. C. Castilla. 2005. Scales of benthic–pelagic coupling and the intensity of species interactions: from recruitment limitation to top-down control. Proceedings of the National Academy of Sciences USA 102: 18046–18051.
- Oliva, D., and J. C. Castilla. 1986. The effect of human exclusion on the population structure of key-hole limpets Fissurella crassa and F. limbata on the coast of central Chile. Marine Ecology 7: 201–217.
- Oróstica, M. H., M. A. Aguilera, G. A. Donoso, J. A. Vásquez, and B. R. Broitman. 2014. Effect of grazing on distribution and recovery of harvested stands of Lessonia berteroana kelp in northern Chile. Marine Ecology Progress Series 511: 71–82.
- Paine, R. T. 1966. Food web complexity and species diversity. American Naturalist 100: 65–75.
- Peres-Neto, P. R., J. D. Olden, and D. A. Jackson. 2001. Environmentally constrained null models: site suitability as occupancy criterion. Oikos 93: 110–120.
- Power, M. E., D. Tilman, J. A. Estes, B. A. Menge, W. J. Bond, S. Mills, G. Daily, J. C. Castilla, J. Lubchenco, and R. T. Paine. 1996. Challenges in the quest for keystones. BioScience 46: 609–620.
- Sander, E. L., J. T. Wootton, and S. Allesina. 2017. Ecological network inference from long-term presence-absence data. Scientific Reports 7: 7154.
- Shinen, J. L., and S. A. Navarrete. 2014. Lottery coexistence on rocky shores: Weak niche differentiation or equal competitors engaged in neutral dynamics? American Naturalist 183: 342–362.
- Slessarev, E. W., Y. Lin, N. L. Bingham, J. E. Johnson, Y. Dai, J. P. Schimel, and O. A. Chadwick. 2016. Water balance creates a threshold in soil pH at the global scale. Nature 540: 567–569.
- Stachowicz, J. 2012. Niche expansion by positive interactions: realizing the fundamentals. A comment on Rodriguez-Cabal et al. Ideas in Ecology and Evolution 5: 42–43.
- Stephens, C. R., J. G. Heau, C. González, C. N. Ibarra-Cerdeña, V. Sánchez-Cordero, and C. González-Salazar. 2009. Using biotic interaction networks for prediction in biodiversity and emerging diseases. PLoS ONE 4: e5725.
- Stephens, C. R., V. Sánchez-Cordero, and C. González Salazar. 2017. Bayesian inference of ecological interactions from spatial data. Entropy 19: 547.
- Ulrich, W. 2004. Species co-occurrences and neutral models: reassessing JM Diamond's assembly rules. Oikos 107: 603–609.
- Ulrich, W., and N. J. Gotelli. 2013. Pattern detection in null model analysis. Oikos 122: 2–18.
- Veech, J. A. 2014. The pairwise approach to analysing species co-occurrence. Journal of Biogeography 41: 1029–1035.
- Wieters, E. A., B. R. Broitman, and G. M. Branch. 2009. Benthic community structure and spatiotemporal thermal regimes in two upwelling ecosystems: comparisons between South Africa and Chile. Limnology and Oceanography 54: 1060–1072.
- Wright, J. P., C. G. Jones, and A. S. Flecker. 2002. An ecosystem engineer, the beaver, increases species richness at the landscape scale. Oecologia 132: 96–101.