Journal list menu
The role of spatial structure in the collapse of regional metapopulations
Corresponding Author
Easton R. White
Center for Population Biology, University of California-Davis, Davis, California, 95616 USA
E-mail: [email protected]Search for more papers by this authorAndrew T. Smith
School of Life Sciences, Arizona State University, Tempe, Arizona, 85287-4501 USA
Search for more papers by this authorCorresponding Author
Easton R. White
Center for Population Biology, University of California-Davis, Davis, California, 95616 USA
E-mail: [email protected]Search for more papers by this authorAndrew T. Smith
School of Life Sciences, Arizona State University, Tempe, Arizona, 85287-4501 USA
Search for more papers by this authorAbstract
Many wildlife populations are either naturally, or as a result of human land use, patchily distributed in space. The degree of fragmentation—specifically the remaining patch sizes and habitat configuration—is an important part of population dynamics. Demographic stochasticity is also likely to play an important role in patchy habitats that host small local populations. We develop a simulation model to evaluate the significance of demographic stochasticity and the role fragmentation plays in the determination of population dynamics and the risk of extinction of populations on habitat patches. Our model is formulated as a Markov-chain stochastic process on a finite, spatially explicit array of patches in which probability of successful dispersal is a function of interpatch distance. Unlike past work, we explicitly model local population dynamics and examine how these scale up to the entire population. As a test case, we apply the model to the American pika (Ochotona princeps) population living on the ore dumps in the ghost mining town of Bodie, California. This population has been studied nearly continuously for over four decades and has been of conservation concern as the southern half of the population declined precipitously beginning in 1989. Our model suggests that both the specific configuration of habitat and landscape heterogeneity are necessary and sufficient predictors of the eventual extinction of the southern constellation of patches. This example has important implications, as it suggests that fragmentation alone can lead to regional extinctions within metapopulations.
Supporting Information
Filename | Description |
---|---|
ecy2546-sup-0001-AppendixS1.pdfPDF document, 221.9 KB | |
ecy2546-sup-0002-AppendixS2.pdfPDF document, 93.5 KB | |
ecy2546-sup-0003-AppendixS3.pdfPDF document, 92.2 KB | |
ecy2546-sup-0004-AppendixS4.pdfPDF document, 169.3 KB | |
ecy2546-sup-0005-AppendixS5.pdfPDF document, 77.6 KB | |
ecy2546-sup-0006-AppendixS6.pdfPDF document, 81.2 KB | |
ecy2546-sup-0007-AppendixS7.pdfPDF document, 156.3 KB |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
Literature Cited
- Beever, E. A., C. Ray, J. L. Wilkening, P. F. Brussard, and P. W. Mote. 2011. Contemporary climate change alters the pace and drivers of extinction. Global Change Biology 17: 2054–2070.
- Castillo, J. A., C. W. Epps, M. R. Jeffress, C. Ray, T. J. Rodhouse, and D. Schwalm. 2016. Replicated Landscape genetic and network analyses reveal wide variation in functional connectivity for American pikas. Ecological Applications 26: 1660–1676.
- Chandler, R. B., E. Muths, B. H. Sigafus, C. R. Schwalbe, C. J. Jarchow, and B. R. Hossack. 2015. Spatial occupancy models for predicting metapopulation dynamics and viability following reintroduction. Journal of Animal Ecology 52: 1325–1333.
- Clinchy, M., D. T. Haydon, and A. T. Smith. 2002. Pattern does not equal process: What does patch occupancy really tell us about metapopulation dynamics? American Naturalist 159: 351–362.
- Diamond, J. M. 1984. Normal extinctions of isolated populations. Pages 191–246 in M. H. Niteck, editor. Extinctions. University of Chicago Press, Chicago, Illinois, USA.
- Eaton, M. J., P. T. Hughes, J. E. Hines, and J. D. Nichols. 2014. Testing metapopulation concepts: effects of patch characteristics and neighborhood occupancy on the dynamics of an endangered lagomorph. Oikos 123: 662–676.
- Fahrig, L. 2003. Effects of habitat fragmentation on biodiversity. Annual Review of Ecology, Evolution, and Systematics 34: 487–515.
- Fronhofer, E. A., A. Kubisch, F. M. Hilker, T. Hovestadt, and H. J. Poethke. 2012. Why are metapopulations so rare? Ecology 93: 1967–1978.
- Ginzburg, L., L. Slobodkin, K. Johnson, and A. Bindman. 1982. Quasiextinction probabilities as a measure of impact on population growth. Risk Analysis 2: 171–181.
- Hanski, I. 1991. Single-species metapopulation dynamics: concepts, models and observations. Biological Journal of the Linnean Society 42: 17–38.
- Hanski, I. 1998. Metapopulation dynamics. Nature 396: 41–50.
- Hanski, I. 2001. Spatially realistic theory of metapopulation ecology. Naturwissenschaften 88: 372–381.
- Hanski, I., and M. Gilpin. 1991. Metapopulation dynamics: brief history and conceptual domain. Biological Journal of the Linnean Society 42: 3–16.
- Hanski, I., and O. Ovaskainen. 2003. Metapopulation theory for fragmented landscapes. Theoretical Population Biology 64: 119–127.
- Hanski, I., T. Pakkala, M. Kuussaari, and G. Lei. 1995. Metapopulation persistence of an endangered butterfly in a fragmented landscape. Oikos 72: 21–28.
- Hanski, I., A. Moilanen, T. Pakkala, and M. Kuussaari. 1996. The quantitative incidence function model and persistence of an endangered butterfly metapopulation. Conservation Biology 10: 578–590.
- Harrison, S. 1991. Local extinction in a metapopulation context: an empirical evaluation. Biological Journal of the Linnean Society 42: 73–88.
- Hastings, A., and L. W. Botsford. 2006. Persistence of spatial populations depends on returning home. Proceedings of the National Academy of Sciences USA 103: 6067–6072.
- Heard, G. W., D. Chris, M. P. Scroggie, and S. L. David. 2015. Refugia and connectivity sustain amphibian metapopulations afflicted by disease. Ecology Letters 18: 853–863.
- Howell, P. E., E. Muths, B. R. Hossack, B. H. Sigafus, and R. B. Chandler. 2018. Increasing connectivity between metapopulation ecology and landscape ecology. Ecology 99: 1–10.
- Levin, S. A. 1992. The problem of pattern and scale in ecology. Ecology 73: 1943–1967.
- Levins, R. 1969. Some demographic and genetic consequences of environmental heterogeneity for biological control. Bulletin of the Entomological Society of America 15: 237–240.
- Levins, R. 1970. Extinction. Pages 75–107 in M. Gerstenhaber, editor. Some mathematical questions in biology. American Mathematical Society, Providence, Rhode Island, USA.
- Melbourne, B. A., and A. Hastings. 2008. Extinction risk depends strongly on factors contributing to stochasticity. Nature 454: 100–103.
- Mestre, F., B. B. Risk, A. Mira, P. Beja, and R. Pita. 2017. A metapopulation approach to predict species range shifts under different climate change and landscape connectivity scenarios. Ecological Modelling 359: 406–414.
- Millar, J. C. 1974. Success of reproduction in pikas, Ochotona princeps. Journal of Mammalogy 55: 527–542.
- Millar, C. I., D. L. Delany, K. A. Hersey, M. R. Jeffress, A. T. Smith, J. VanGunst, and R. D. Westfall. 2018. Distribution, climatic relationships, and status of American pikas (Ochotona princeps) in the Great Basin, USA. Arctic, Antarctic, and Alpine Research 50: e1436296.
- Moilanen, A. 2004. SPOMSIM: software for stochastic patch occupancy models of metapopulation dynamics. Ecological Modelling 179: 533–550.
- Moilanen, A., A. T. Smith, and I. Hanski. 1998. Long-term dynamics in a metapopulation of the American pika. American Naturalist 152: 530–542.
- Nichols, L. B., K. B. Klingler, and M. M. Peacock. 2016. American pikas (Ochotona princeps) extirpated from the historic Masonic Mining District of eastern California. Western North American Naturalist 76: 163–171.
- Olivier, P. I., R. J. Van Aarde, and S. M. Ferreira. 2009. Support for a metapopulation structure among mammals. Mammal Review 39: 178–192.
- Ozgul, A., M. K. Oli, K. B. Armitage, D. T. Blumstein, and D. H. Van Vuren. 2009. Influence of local demography on asymptotic and transient dynamics of a yellow-bellied marmot metapopulation. American Naturalist 173: 517–530.
- Peacock, M. M. 1997. Determining natal dispersal patterns in a population of North American pikas (Ochotona princeps) using direct mark-resight and indirect genetic methods. Behavioral Ecology 8: 340–350.
- Peacock, M. M., and A. T. Smith. 1997. The effect of habitat fragmentation on dispersal patterns, mating behavior, and genetic variation in a pika (Ochotona princeps) metapopulation. Oecologia 112: 524–533.
- Pellet, J., E. Fleishman, D. S. Dobkin, A. Gander, and D. D. Murphy. 2007. An empirical evaluation of the area and isolation paradigm of metapopulation dynamics. Biological Conservation 136: 483–495.
- Penczykowski, R. M., E. Walker, S. Soubeyrand, and A. L. Laine. 2015. Linking winter conditions to regional disease dynamics in a wild plant-pathogen metapopulation. New Phytologist 205: 1142–1152.
- Risk, B. B., P. De Valpine, and S. R. Beissinger. 2011. A robust-design formulation of the incidence function model of metapopulation dynamics applied to two species of rails. Ecology 92: 462–474.
- Robles, H., and C. Ciudad. 2012. Influence of habitat quality, population size, patch size, and connectivity on patch-occupancy dynamics of the middle spotted woodpecker. Conservation Biology 26: 284–293.
- Severaid, J. H. 1955. The natural history of the pikas (mammalian Genus Ochotona). Dissertation. University of California, Berkeley, Berkeley, California, USA.
- Smith, A. T. 1974a. The distribution and dispersal of pikas: consequences of insular population structure. Ecology 55: 1112–1119.
- Smith, A. T. 1974b. The distribution and dispersal of pikas: influences of behavior and climate. Ecology 55: 1368–1376.
- Smith, A. T. 1978. Comparative demography of pikas (Ochotona): effect of spatial and temporal age-specific mortality. Ecology 59: 133–139.
- Smith, A. T. 1980. Temporal changes in insular populations of the pika (Ochotona princeps). Ecology 61: 8–13.
- Smith, A. T. 1987. Population structure of pikas: dispersal versus philosophy. Pages 128–142 in B. D. Chepko-Sade and Z. T. Halpin, editors. Mammalian dispersal patterns: the effects of social structure on population genetics. University of Chicago Press, Chicago, Illinois, USA.
- Smith, A. T., and M. Gilpin. 1997. Spatially correlated dynamics in a pika metapopulation. Pages 407–423 in I. Hanski and M. E. Gilpin, editors. Metapopulation biology: ecology, genetics, and evolution. Academic Press, San Diego, California, USA.
10.1016/B978-012323445-2/50022-5 Google Scholar
- Smith, A. T., and B. L. Ivins. 1983a. Colonization in a pika population: dispersal versus philopatry. Behavioral Ecology and Sociobiology 13: 37–47.
- Smith, A. T., and B. L. Ivins. 1983b. Reproductive tactics of pikas: why have two litters? Canadian Journal of Zoology 61: 1551–1559.
- Smith, A. T., and J. D. Nagy. 2015. Population resilience in an American pika (Ochotona princeps) metapopulation. Journal of Mammalogy 96: 393–404.
- Smith, A. T., and M. L. Weston. 1990. Ochotona princeps. Mammalian Species 352: 1–8.
10.2307/3504319 Google Scholar
- Sutherland, C. S., D. A. Elston, and X. Lambin. 2012. Multi-scale processes in metapopulations: contributions of stage structure, rescue effect, and correlated extinctions. Ecology 93: 2465–2473.
- Sutherland, C. S., D. Elston, and X. A. Lambin. 2014. A demographic, spatially explicit patch occupancy model of metapopulation dynamics and persistence. Ecology 95: 3149–3160.
- Swihart, R. K., T. C. Atwood, J. R. Goheen, D. M. Scheiman, K. E. Munroe, and T. M. Gehring. 2003. Patch occupancy of North American mammals: Is patchiness in the eye of the beholder? Journal of Biogeography 30: 1–21.
- Villard, M.-A., and J. P. Metzger. 2014. Beyond the fragmentation debate: a conceptual model to predict when habitat configuration really matters. Journal of Applied Ecology 51: 309–318.
- White, E. R. 2018. Minimum time required to detect population trends: the need for long-term monitoring programs. PeerJ Preprints 6: e3168v4.
- White, E. R., and A. Hastings. 2018. Seasonality in ecology: progress and prospects in theory. PeerJ Preprints 6: e27235v1.
- Zurell, D., et al. 2010. The virtual ecologist approach: simulating data and observers. Oikos 119: 622–635.