Journal list menu
Lianas maintain insectivorous bird abundance and diversity in a neotropical forest
Corresponding Author
Stefan A. Schnitzer
Department of Biological Sciences, Marquette University, P.O. Box 1881, Milwaukee, Wisconsin, 53201 USA
Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Balboa, República de Panamá
E-mail: [email protected]
Search for more papers by this authorNicole L. Michel
National Audubon Society, 225 Varick Street, New York, New York, 10014 USA
Search for more papers by this authorJennifer S. Powers
Departments of Ecology, Evolution & Behavior and Plant Biology, University of Minnesota, 1479 Gortner Avenue, St. Paul, Minnesota, 55108 USA
Search for more papers by this authorW. Douglas Robinson
Oak Creek Lab of Biology, Department of Fisheries and Wildlife, Oregon State University, 104 Nash Hall, Corvallis, Oregon, 97331 USA
Search for more papers by this authorCorresponding Author
Stefan A. Schnitzer
Department of Biological Sciences, Marquette University, P.O. Box 1881, Milwaukee, Wisconsin, 53201 USA
Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Balboa, República de Panamá
E-mail: [email protected]
Search for more papers by this authorNicole L. Michel
National Audubon Society, 225 Varick Street, New York, New York, 10014 USA
Search for more papers by this authorJennifer S. Powers
Departments of Ecology, Evolution & Behavior and Plant Biology, University of Minnesota, 1479 Gortner Avenue, St. Paul, Minnesota, 55108 USA
Search for more papers by this authorW. Douglas Robinson
Oak Creek Lab of Biology, Department of Fisheries and Wildlife, Oregon State University, 104 Nash Hall, Corvallis, Oregon, 97331 USA
Search for more papers by this authorCorresponding Editor: Ivette Perfecto.
Abstract
The spatial habitat heterogeneity hypothesis posits that habitat complexity increases the abundance and diversity of species. In tropical forests, lianas add substantial habitat heterogeneity and complexity throughout the vertical forest profile, which may maintain animal abundance and diversity. The effects of lianas on tropical animal communities, however, remain poorly understood. We propose that lianas have a positive effect on animals by enhancing habitat complexity. Lianas may have a particularly strong influence on the forest bird community, providing nesting substrate, protection from predators, and nutrition (food). Understory insectivorous birds, which forage for insects that specialize on lianas, may particularly benefit. Alternatively, it is possible that lianas have a negative effect on forest birds by increasing predator abundances and providing arboreal predators with travel routes with easy access to bird nests. We tested the spatial habitat heterogeneity hypothesis on bird abundance and diversity by removing lianas, thus reducing forest complexity, using a large-scale experimental approach in a lowland tropical forest in the Republic of Panama. We found that removing lianas decreased total bird abundance by 78.4% and diversity by 77.4% after 8 months, and by 40.0% and 51.7%, respectively, after 20 months. Insectivorous bird abundance and diversity 8 months after liana removal were 91.8% and 89.5% lower, respectively, indicating that lianas positively influence insectivorous birds. The effects of liana removal persisted longer for insectivorous birds than other birds, with 77.3% lower abundance and 76.2% lower diversity after 20 months. Liana removal also altered bird community composition, creating two distinct communities in the control and removal plots, with disproportionate effects on insectivores. Our findings demonstrate that lianas have a strong positive influence on the bird community, particularly for insectivorous birds in the forest understory. Lianas may maintain bird abundance and diversity by increasing habitat complexity, habitat heterogeneity, and resource availability.
Supporting Information
Filename | Description |
---|---|
ecy3176-sup-0001-AppendixS1.pdfPDF document, 163.2 KB | Appendix S1 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
Literature Cited
- Adams, B. J., S. A. Schnitzer, and S. P. Yanoviak. 2017. Trees as islands: canopy ant species richness increases with the size of liana-free trees in a Neotropical forest. Ecography 40: 1067–1075.
- Adams, B., S. A. Schnitzer, and S. P. Yanoviak. 2019. Connectivity explains local ant community structure in a Neotropical forest canopy: a large-scale experimental approach. Ecology https://doi.org/10.1002/ecy2673.
- Anderson, S. H., D. Kelly, A. W. Robertson, and J. J. Ladley. 2016. Pollination by birds. A functional evaluation. Pages 73–106 in C. H. Şekercioğlu, D. G. Wenny and C. J. Whelan, editors. Why birds matter. Avian ecological function and ecosystem services. University of Chicago Press, Chicago, Illinois, USA.
- Arroyo-Rodriguez, V., N. Asensio, J. C. Dunn, J. Cristobal-Azkarate, and A. Gonzalez-Zamora. 2015. Use of lianas by primates: more than a food source. Pages 407–426 in S. A. Schnitzer, F. Bongers, R. J. Burnham, and F. E. Putz, editors. Ecology of lianas. Wiley-Blackwell, Oxford, UK.
10.1002/9781118392409.ch27 Google Scholar
- Banks-Leite, C., and R. Cintra. 2008. The heterogeneity of Amazonian treefall gaps and bird community composition. Ecotropica 14: 1–13.
- Barry, K. E., S. A. Schnitzer, M. van Bruegal, and J. S. Hall. 2015. Rapid liana colonization and community development along a secondary forest chronosequence. Biotropica 47: 672–680.
- Brooks, M. E., K. Kristensen, K. J. van Benthem, A. Magnusson, C. W. Berg, A. Nielsen, H. J. Skaug, M. Mächler, and B. M. Bolker. 2017. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. The R Journal 9: 378–400.
- Buckland, S. T., D. R. Anderson, K. P. Burnham, J. L. Laake, D. L. Borchers, and L. Thomas. 2001. Introduction to distance sampling. Oxford University Press, Oxford, UK.
10.1093/oso/9780198506492.001.0001 Google Scholar
- Cahill, J. F., J. P. Castelli, and B. B. Casper. 2001. The herbivore uncertainty principle: visiting plants can alter herbivory. Ecology 82: 307–312.
- Castaño-Villa, G. J., S. A. Ramos-Valencia, and F. E. Fontúrbel. 2014. Fine-scale habitat structure complexity determines insectivorous bird diversity in a tropical forest. Acta Oecologica 61: 19–23.
- Castaño-Villa, G. J., R. Santisteban-Arenas, A. Hoyos-Jaramillo, J. V. Estévez-Varón, and F. E. Fontúrbel. 2019. Foraging behavioural traits of tropical insectivorous birds lead to dissimilar communities in contrasting forest habitats. Wildlife Biology 2019(1): 1–6.
- Clark, D. B., P. C. Olivas, S. F. Oberbauer, D. A. Clark, and M. G. Ryan. 2008. First direct landscape-scale measurement of tropical rain forest leaf area index, a key driver of global primary productivity. Ecology Letters 11: 163–172.
- Dalling, J. W., S. A. Schnitzer, C. Baldeck, K. E. Harms, R. John, S. A. Mangan, E. Lobo, J. B. Yavitt, and S. P. Hubbell. 2012. Resource-based habitat associations in a Neotropical liana community. Journal of Ecology 100: 1174–1182.
- DeWalt, S. J., et al 2015. Biogeographical patterns of liana abundance and diversity. Pages 131–146 in S. A. Schnitzer, F. Bongers, R. J. Burnham, and F. E. Putz editors. Ecology of lianas. Wiley-Blackwell, Oxford, UK.
10.1002/9781118392409.ch11 Google Scholar
- DeWalt, S. J., S. A. Schnitzer, and J. S. Denslow. 2000. Density and diversity of lianas along a chronosequence in a central Panamanian tropical forest. Journal of Tropical Ecology 16: 1–19.
- Dunn, J., N. Asensio, V. Arroyo-Rodriguez, S. A. Schnitzer, and J. Cristobal-Azkarate. 2012. The ranging costs of a fallback food: liana consumption supplements diet but increases foraging effort in howler monkeys. Biotropica 44: 705–714.
- Estrada-Villegas, S. J. S., M. van Hall, and S. A. S. Breugel. 2020. Lianas reduce biomass accumulation in early successional tropical forests. Ecology https://doi.org/10.1002/ecy2989
- García-León, M. M., L. M. Izquierdo, F. N. Arantes Mello, J. S. Powers, and S. A. Schnitzer. 2018. Lianas reduce community-level canopy tree reproduction in a Panamanian forest. Journal of Ecology 106: 737–745.
- Gradwohl, J., and R. Greenberg. 1980. The formation of antwren flocks on Barro Colorado Island, Panama. The Auk 97: 385–395.
- Hilje, B., S. Stack, and A. Sanchez-Azofeifa. 2017. Lianas abundance is positively related with the avian acoustic community in tropical dry forests. Forests 8: 311.
- Hovick, T. J., R. D. Elmore, S. D. Fuhlendorf, D. M. Engle, and R. G. Hamilton. 2015. Spatial heterogeneity increases diversity and stability in grassland bird communities. Ecological Applications 25: 662–672.
- Huffaker, C. B. 1958. Experimental studies on predation: dispersion factors and predator–prey oscillations. Hilgardia: Journal of Agricultural Science 27: 343–384.
10.3733/hilg.v27n14p343 Google Scholar
- Janzen, D. H. 1970. Herbivores and the number of tree species in tropical forests. American Naturalist 104: 501–528.
- Kainer, K. A., L. H. O. Wadt, and C. L. Staudhammer. 2014. Testing a silvicultural recommendation: Brazil nut responses 10 years after liana cutting. Journal of Applied Ecology 51: 655–663.
- Koenig, S. E., J. M. Wunderle, and E. C. Enkerlin-Hoeflich. 2007. Vines and canopy contact: a route for snake predation on parrot nests. Bird Conservation International 17: 79–91.
- Lack, D. 1969. The numbers of bird species on islands. Bird Study 4: 193–209.
- Lambert, T. D., and M. K. Halsey. 2015. Relationship between lianas and arboreal mammals: examining the Emmons–Gentry hypothesis. Pages 398–406 in S. A. Schnitzer, F. Bongers, R. J. Burnham, and F. E. Putz editors. Ecology of lianas. Wiley-Blackwell, Oxford, UK.
10.1002/9781118392409.ch26 Google Scholar
- Lambert, T. D., J. R. Malcolm, and B. L. Zimmerman. 2006. Amazonian small mammal abundances in relation to habitat structure and resource abundance. Journal of Mammalogy 87: 766–776.
- Lawton, J. H. 1983. Plant architecture and the diversity of phytophagous insects. Annual Review of Entomology 28: 23–39.
- Ledo, A., and S. A. Schnitzer. 2014. Disturbance and clonal reproduction determine liana distribution and maintain liana diversity in a tropical forest. Ecology 95: 2169–2178.
- Lenth, R. 2019. emmeans: Estimated marginal means, aka least-squares means. R package version 1.3.2. https://CRAN.R-project.org/package=emmeans
- MacArthur, R. H., and J. W. MacArthur. 1961. On bird species diversity. Ecology 42: 594–598.
- Marvin, D. C., G. P. Asner, and S. A. Schnitzer. 2016. Liana canopy cover mapped throughout a tropical forest with high-fidelity imaging spectroscopy. Remote Sensing of Environment 176: 98–106.
- Michel, N. L., W. P. Carson, and T. W. Sherry. 2015a. Do collared peccaries negatively impact under-story insectivorous rainforest birds indirectly via lianas and vines? Biotropica 47: 745–757.
- Michel, N. L., W. D. Robinson, and T. W. Sherry. 2015b. Liana-bird relationships: a review. Pages 362–397 in S. A. Schnitzer, F. Bongers, R. J. Burnham, and F. E. Putz editors. Ecology of lianas. Wiley-Blackwell, Oxford, UK.
10.1002/9781118392409.ch25 Google Scholar
- Michel, N. L., T. W. Sherry, and W. P. Carson. 2015c. The omnivorous collared peccary negates an insectivore-generated trophic cascade in Costa Rican wet tropical forest understory. Journal of Tropical Ecology 30: 1–11.
- Moore, R. P., W. D. Robinson, I. J. Lovette, and T. R. Robinson. 2008. Experimental evidence for extreme dispersal limitation in tropical birds. Ecology Letters 11: 1–9.
- Moorthy, S., K. Calders, M. di Porcia e Brugnera, S. Schnitzer, and H. Verbeeck. 2018. Terrestrial laser scanning to detect liana impact on forest structure. Remote Sensing 10: 810.
- Muller-Landau, H. C., and B. D. Hardesty. 2005. Seed dispersal of woody plants in tropical forests: Concepts, examples, and future directions. Pages 267–309 in D. F. R. P. Burslem, M. A. Pinard, and S. Hartley, editors. Biotic interactions in the tropics. Cambridge University Press, Cambridge, UK.
10.1017/CBO9780511541971.012 Google Scholar
- Ødegaard, F. 2000. How many species of arthropods? Erwin’s estimate revised. Biological Journal of the Linnean Society 71: 583–597.
- Odell, E. H., N. E. Stork, and R. L. Kitching. 2019. Lianas as a food resource for herbivorous insects: a comparison with trees. Biological Reviews 94: 1416–1429.
- Oksanen, J., F. G. Blanchet, M. Friendly, R. Kindt, P. Legendre, D. McGlinn, P. R. Minchin, R. B. O'Hara, G. L. Simpson, P. Solymos, M. H. H. Stevens, E. Szoecs, and H. Wagner. 2019. vegan: Community ecology package. R package version 2.5-4. https://CRAN.R-project.org/package=vegan
- Parolari, A. J., K. Paul, A. Griffing, R. Condit, R. Perez, S. Aguilar, and S. A. Schnitzer. 2020. Liana abundance and diversity increase with rainfall seasonality along a precipitation gradient in Panama. Ecography 43: 25–33.
- Pianka, E. R. 1966. Convexity, desert lizards, and spatial heterogeneity. Ecology 47: 1055–1059.
- Pinheiro, J., D. Bates, S. DebRoy, D. Sarkar, and R Development Core Team. 2018. nlme: Linear and nonlinear mixed effects models. R package version 3.1-137. https://CRAN.R-project.org/package=nlme
- Pollock, H. S., Z. A. Cheviron, T. J. Agin, and J. D. Brawn. 2015. Absence of microclimate selectivity in insectivorous birds of the Neotropical forest understory. Biological Conservation 188: 116–125.
- Quan, H., and R. E. Ricklefs. 2007. A latitudinal gradient in a large-scale beta diversity for vascular plants in North America. Ecology Letters 10: 737–744.
- R Development Core Team. 2018. R: A language and environment for statistical computing. Version 3.5.2. R Foundation for Statistical Computing, Vienna, Austria https://www.R-project.org/
- Rigby, E. 2016. Simulating Effects of Imperfect Detectability in Bird Surveys: Doctoral dissertation, University of Minnesota.
- Robinson, W. D. 2001. Changes in abundance of birds in a Neotropical forest fragment over 25 years: a review. Animal Biodiversity and Conservation 24: 51–65.
- Robinson, W. D. 2010. The challenges of studying vertebrates in habitat treatment plots. Open Environmental Sciences Journal 4: 21–23.
10.2174/1876325101004010021 Google Scholar
- Robinson, W. D., J. D. Brawn, and S. K. Robinson. 2000. Forest bird community structure in central Panama: influence of spatial scale and biogeography. Ecological Monographs 70: 209–235.
- Rodriguez-Ronderos, M. E., G. Bohrer, A. Sánchez-Azofeifa, J. S. Powers, and S. A. Schnitzer. 2016. Contribution of lianas to plant area index and structure in a Panamanian forest. Ecology 97: 3271–3277.
- Roper, J. J. 1996. Nest predation and its importance for a Neotropical bird, the Western Slaty Antshrike (Thamnophilus atrinucha). Dissertation. University of Pennsylvania, Philadelphia, Pennsylvania, USA.
- Sánchez-Azofeifa, G. A., M. Kalacska, M. M. Espírito-Santo, G. W. Fernandes, and S. Schnitzer. 2009. Tropical dry forest succession and the contribution of Lianas to wood area index (WAI). Forest Ecology and Management 258: 941–948.
- Schnitzer, S. A. 2005. A mechanistic explanation for global patterns of liana abundance and distribution. American Naturalist 166: 262–276.
- Schnitzer, S. A., et al. 2012. Liana abundance, diversity, and distribution on Barro Colorado Island, Panama. PLoS One 7(12): e52114.
- Schnitzer, S. A.2015. Increasing liana abundance and biomass in Neotropical forests: causes and consequences. Pages 451–464 in S. A. Schnitzer, F. Bongers, R. J. Burnham, and F. E. Putz editors. Ecology of lianas. Wiley-Blackwell, Oxford, UK.
10.1002/9781118392409.ch30 Google Scholar
- Schnitzer, S. A. 2018. Testing ecological theory with lianas. New Phytologist 220: 366–380.
- Schnitzer, S. A., and F. Bongers. 2002. The ecology of lianas and their role in forests. Trends in Ecology and Evolution 17: 223–230.
- Schnitzer, S. A., and F. Bongers. 2011. Increasing liana abundance and biomass in tropical forests: emerging patterns and putative mechanisms. Ecology Letters 14: 397–406.
- Schnitzer, S. A., P. B. Reich, B. Bergner, and W. P. Carson. 2002. Herbivore and pathogen damage on grassland and woodland plants: A test of the herbivore uncertainty principle. Ecology Letters 5: 531–539.
- Schnitzer, S. A., and G. M. F. van der Heijden. 2019. Lianas have a seasonal growth advantage over co-occurring trees. Ecology https://doi.org/10.1002/ecy2655
- Sherry, T. W. 1984. Comparative dietary ecology of sympatric, insectivorous Neotropical flycatchers (Tyrannidae). Ecological Monographs 54: 313–338.
- Stein, A., K. Gerstner, and H. Kreft. 2014. Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecology Letters 17: 866–880.
- Stratford, J. A., and W. D. Robinson. 2005. Gulliver travels to the fragmented tropics: geographic variation in mechanisms of avian extinction. Frontiers in Ecology and Environment 3: 85–92.
- Tews, J. U., V. Brose, K. Grimm, M. C. Tiebörger, M. Wichmann, and F. J. Schwager. 2004. Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures. Journal of Biogeography 31: 79–92.
- van der Heijden, G. M., J. S. Powers, and S. A. Schnitzer. 2015. Lianas reduce carbon accumulation in tropical forests. Proceedings of the National Academy of Sciences 112: 13267–13271.
- van der Heijden, G. M. F., J. S. Powers, and S. A. Schnitzer. 2019. No seasonal differences in liana effect on forest-level tree biomass growth in a liana removal experiment in Panama. Journal of Ecology 107: 1890–1900.
- Walther, B. A. 2002. Vertical stratification and use of vegetation and light habitats by Neotropical forest birds. Journal of Ornithology 143: 64–81.
- Wenny, D. G., Ç. H. Şekercioğlu, N. J. Cordeiro, H. S. Rogers, and D. Kelly. 2016. Seed dispersal by fruit-eating birds. Pages 107–146 in C. H. Şekercioğlu, D. G. Wenny, and C. J. Whelan, editors. Why birds matter. Avian ecological function and ecosystem services. University of Chicago Press, Chicago, Illinois, USA.
- Whelan, C. J., Ç. H. Şekercioğlu, and D. G. Wenny. 2016. Trophic interaction networks and ecosystem services. Pages 49–72 in C. H. Şekercioğlu, D. G. Wenny and C. J. Whelan, editors. Why birds matter. Avian ecological function and ecosystem services. University of Chicago Press, Chicago, Illinois, USA.
- Wickham, H. 2016. ggplot2: Elegant graphics for data analysis. Springer-Verlag, New York, USA.
10.1007/978-3-319-24277-4 Google Scholar
- Wolda, H. 1979. Abundance and diversity of Homoptera in the canopy of a tropical forest. Ecological Entomology 4: 181–190.
- Yanoviak, S. 2015. Effects of lianas on canopy arthropod community structure. Pages 345–361 in S. A. Schnitzer, F. Bongers, R. J. Burnham, and F. E. Putz editors. Ecology of lianas, Wiley-Blackwell, Oxford, UK.
10.1002/9781118392409.ch24 Google Scholar
- Yanoviak, S. P., and S. A. Schnitzer. 2013. Functional roles of lianas for forest canopy animals. Pages 209–214 in M. Lowman, S. Devy, and T. Ganesh editors. Treetops at risk. Springer Verlag, New York, New York, USA.
10.1007/978-1-4614-7161-5_21 Google Scholar