Journal list menu
The application of community ecology theory to co-infections in wildlife hosts
Corresponding Author
Chloe Ramsay
Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, 46556 USA
E-mail: [email protected]
Search for more papers by this authorJason R. Rohr
Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, 46556 USA
Search for more papers by this authorCorresponding Author
Chloe Ramsay
Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, 46556 USA
E-mail: [email protected]
Search for more papers by this authorJason R. Rohr
Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, 46556 USA
Search for more papers by this authorAbstract
Priority effect theory, a foundational concept from community ecology, states that the order and timing of species arrival during species assembly can affect species composition. Although this theory has been applied to co-infecting parasite species, it has almost always been with a single time lag between co-infecting parasites. Thus, how the timing of parasite species arrival affects co-infections and disease remains poorly understood. To address this gap in the literature, we exposed postmetamorphic Cuban tree frogs (Osteopilus septentrionalis) to Ranavirus, the fungus Batrachochytrium dendrobatidis (Bd), a nematode Aplectana hamatospicula, or pairs of these parasites either simultaneously or sequentially at a range of time lags and quantified load of the secondary parasite and host growth, survival, and parasite tolerance. Prior exposure to Bd or A. hamatospicula significantly increased viral loads relative to hosts singly infected with Ranavirus, whereas A. hamatospicula loads in hosts were higher when coexposed to Bd than when coexposed to Ranavirus. There was a significant positive relationship between time since Ranavirus infection and Bd load, and prior exposure to A. hamatospicula decreased Bd loads compared to simultaneous co-infection with these parasites. Infections with Bd and Ranavirus either singly or in co-infections decreased host growth and survival. This research reveals that time lags between co-infections can affect parasite loads, in line with priority effects theory. As co-infections in the field are unlikely to be simultaneous, an understanding of when co-infections are impacted by time lags between parasite exposures may play a major role in controlling problematic co-infections.
Supporting Information
Filename | Description |
---|---|
ecy3253-sup-0001-AppendixS1.pdfPDF document, 1.4 MB | Appendix S1 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
Literature Cited
- Abbas, A. K., K. M. Murphy, and A. Sher. 1996. Functional diversity of helper T lymphocytes. Nature 383: 787–793.
- Baker, M. R. 1987. Synopsis of the Nematoda parasitic in amphibians and reptiles. Memorial University of Newfoundland, Occasional Papers in Biology 11:1–325.
- Bekhet, G. A., H. A. Abdou, S. A. Dekinesh, H. A. Hussein, and S. S. Sebiae. 2014. Biological factors controlling developmental duration, growth and metamorphosis of the larval green toad, Bufo viridis viridis. The Journal of Basic & Applied Zoology 67: 67–82.
10.1016/j.jobaz.2014.09.005 Google Scholar
- Berger, A. 2000. Th1 and Th2 responses: what are they? British Medical Journal 321: 424.
- Berger, L., et al. 1998. Chytridiomycosis causes amphibian mortality associated with population declines in the rain forests of Australia and Central America. Proceedings of the National Academy of Sciences 95: 9031–9036.
- Berger, L., A. D. Hyatt, R. Speare, and J. E. Longcore. 2005. Life cycle stages of the amphibian chytrid Batrachochytrium dendrobatidis. Diseases of Aquatic Organisms 68: 51–63.
- Blanco, J. L., and M. E. Garcia. 2008. Immune response to fungal infections. Veterinary Immunology and Immunopathology 125: 47–70.
- Blaustein, L., and J. Margalit. 1996. Priority effects in temporary pools: nature and outcome of mosquito larva–toad tadpole interactions depend on order of entrance. British Ecological Society 65: 77–84.
- Boyle, D. G., D. B. Boyle, V. Olsen, A. T. Morgan, and A. D. Hyatt. 2004. Rapid quantitative detection of chytridiomycosis (Batrachochytrium dendrobatidis) in amphibian samples using real-time Taqman PCR assay. Diseases of Aquatic Organisms 60: 141–148.
- Breheny, P., and W. Burchett. 2019. visreg: Visualization of regression models, R version 2.5-1. http://pbreheny.github.io/visreg/
- Bretscher, P. A. 2014. On the mechanism determining the TH1/TH2 phenotype of an immune response, and its pertinence to strategies for the prevention, and treatment, of certain infectious diseases. Scandinavian Journal of Immunology 79: 361–376.
- Bromenshenk, J. J., et al. 2010. Iridovirus and microsporidian linked to honey bee colony decline. PLoS One 5:e13181.
- Chesson, P., and J. J. Kuang. 2008. The interaction between predation and competition. Nature 456: 235–238.
- Chinchar, V. G. 2002. Ranavirus (family Iridoviridae): emerging cold-blooded killers. Archives of Virology 147: 447–470.
- Cohen, J. M., M. D. Venesky, E. L. Sauer, D. J. Civitello, T. A. McMahon, E. A. Roznik, and J. R. Rohr. 2017. The thermal mismatch hypothesis explains host susceptibility to an emerging infectious disease. Ecology Letters 20: 184–193.
- Corbett, E. L., C. J. Watt, N. Walker, D. Maher, B. G. Williams, and M. C. Raviglione. 2003. The growing burden of tuberculosis: global trends and interactions with the HIV epidemic. Archives of Internal Medicine 163: 1009–1021.
- Cramp, R. L., R. K. McPhee, E. A. Meyer, M. E. Ohmer, and C. E. Franklin. 2014. First line of defence: the role of sloughing in the regulation of cutaneous microbes in frogs. Conservation Physiology 2: cou012.
- Cunningham, A. A., T. E. S. Langton, P. M. Bennett, J. F. Lewin, S. E. N. Drury, R. E. Gough, and S. K. Macgregor. 1996. Pathological and microbiological findings from incidents of unusual mortality of the common frog (Rana temporaria). Philosophical Transactions of the Royal Society B 351: 1539–1557.
- de Roode, J. C., R. Culleton, S. J. Cheesman, R. Carter, and A. F. Read. 2004. Host heterogeneity is a determinant of competitive exclusion or coexistence in genetically diverse malaria infections. Proceedings of Biological Sciences 271: 1073–1080.
- de Roode, J. C., M. E. Helinski, M. A. Anwar, and A. F. Read. 2005. Dynamics of multiple infection and within-host competition in genetically diverse malaria infections. American Naturalist 166: 531–542.
- Devevey, G., T. Dang, C. J. Graves, S. Murray, and D. Brisson. 2015. First arrived takes all: inhibitory priority effects dominate competition between co-infecting Borrelia burgdorferi strains. BMC Microbiology 15: 61.
- Drake, J. A. 1991. Community-assembly mechanics and the structure of an experimental species ensemble. American Naturalist 137: 1–26.
- Ezenwa, V. O., and A. E. Jolles. 2015. Epidemiology. Opposite effects of anthelmintic treatment on microbial infection at individual versus population scales. Science 347: 175–177.
- Facelli, J. M., and E. Facelli. 1993. Interactions after death: plant litter controls priority effects in a successional plant community. Oecologia 95: 277–282.
- Fites, J. S. 2014. Evasion of adaptive immune defenses by the lethal chytrid fungus Batrachochytrium dendrobatidis. Vanderbilt University.
- Fites, J. S., et al. 2013. The invasive chytrid fungus of amphibians paralyzes lymphocyte responses. Science 342: 366–369.
- Fites, J. S., L. K. Reinert, T. M. Chappell, and L. A. Rollins-Smith. 2014. Inhibition of local immune responses by the frog-killing fungus Batrachochytrium dendrobatidis. Infection and Immunity 82: 4698–4706.
- Gantress, J., G. D. Maniero, N. Cohen, and J. Robert. 2003. Development and characterization of a model system to study amphibian immune responses to iridoviruses. Virology 311: 254–262.
- Gervasi, S., C. Gondhalekar, D. H. Olson, and A. R. Blaustein. 2013. Host identity matters in the amphibian–Batrachochytrium dendrobatidis system: fine-scale patterns of variation in responses to a multi-host pathogen. PLoS One 8:e54490.
- Graham, A. L. 2008. Ecological rules governing helminth–microparasite coinfection. Proceedings of the National Academy of Sciences of the United States of America 105: 566–570.
- Gray, M. J., D. L. Miller, and J. T. Hoverman. 2009. Ecology and pathology of amphibian ranaviruses. Diseases of Aquatic Organisms 87: 243–266.
- Green, D. E., K. A. Converse, and A. K. Schrader. 2002. Epizootiology of sixty-four amphibian morbidity and mortality events in the USA, 1996–2001. Annals of the New York Academy of Sciences 969: 323–339.
- Greub, G., et al. 2000. Clinical progression, survival, and immune recovery during antiretroviral therapy in patients with HIV-1 and hepatitis C virus coinfection: the Swiss HIV Cohort Study. The Lancet 356: 1800–1805.
- Grogan, L. F., J. Robert, L. Berger, L. F. Skerratt, B. C. Scheele, J. G. Castley, D. A. Newell, and H. I. McCallum. 2018. Review of the amphibian immune response to Chytridiomycosis, and future directions. Frontiers in Immunology 9: 2536.
- Hess, A., C. McAllister, J. DeMarchi, M. Zidek, J. Murone, and M. D. Venesky. 2015. Salamanders increase their feeding activity when infected with the pathogenic chytrid fungus Batrachochytrium dendrobatidis. Diseases of Aquatic Organisms 116: 205–212.
- Hothorn, W. 2010. multcomp: simultaneous inference in general parametric models, R package version 1.4-10. http://multcomp.r-forge.r-project.org/
- Hoverman, J. T., M. J. Gray, and D. L. Miller. 2010. Anuran susceptibilities to ranaviruses: role of species identity, exposure route, and a novel virus isolate. Diseases of Aquatic Organisms 89: 97–107.
- Hoverman, J. T., B. J. Hoye, and P. T. Johnson. 2013. Does timing matter? How priority effects influence the outcome of parasite interactions within hosts. Oecologia 173: 1471–1480.
- Hoverman, J. T., J. R. Mihaljevic, K. L. Richgels, J. L. Kerby, and P. T. Johnson. 2012. Widespread co-occurrence of virulent pathogens within California amphibian communities. EcoHealth 9: 288–292.
- Inclan-Rico, J. M., and M. C. Siracusa. 2018. First responders: innate immunity to helminths. Trends in Parasitology 34: 861–880.
- Jamieson, A. M., L. Pasman, S. Yu, P. Gamradt, R. J. Homer, T. Decker, and R. Medzhitov. 2013. Role of tissue protection in lethal respiratory viral–bacterial coinfection. Science 340: 1230–1234.
- Johnson, P. T., J. C. de Roode, and A. Fenton. 2015. Why infectious disease research needs community ecology. Science 349: 1259504.
- Johnson, P. T. J., and I. D. Buller. 2011. Parasite competition hidden by correlated coinfection: using surveys and experiments to understand parasite interactions. Ecology 92: 535–541.
- Kilpatrick, A. M., C. J. Briggs, and P. Daszak. 2010. The ecology and impact of chytridiomycosis: an emerging disease of amphibians. Trends in Ecology & Evolution 25: 109–118.
- Kim, J., H. K. Chung, and C. Chae. 2003. Association of porcine circovirus 2 with porcine respiratory disease complex. The Veterinary Journal 166: 251–256.
- Knutie, S. A., C. L. Wilkinson, Q. C. Wu, C. N. Ortega, and J. R. Rohr. 2017. Host resistance and tolerance of parasitic gut worms depend on resource availability. Oecologia 183: 1031–1040.
- Kuris, A. M., and K. D. Lafferty. 1994. Community structure: larval trematodes in snail hosts. Annual Review of Ecology and Systematics 25: 189–217.
- Leopold, D. R., J. P. Wilkie, I. A. Dickie, R. B. Allen, P. K. Buchanan, and T. Fukami. 2017. Priority effects are interactively regulated by top-down and bottom-up forces: evidence from wood decomposer communities. Ecology Letters 20: 1054–1063.
- Lochmiller, R. L., and C. Deerenberg. 2000. Trade-offs in evolutionary immunology: just what is the cost of immunity? Oikos 88: 87–98.
- Maniero, G. D., H. Morales, J. Gantress, and J. Robert. 2006. Generation of a long-lasting, protective, and neutralizing antibody response to the ranavirus FV3 by the frog Xenopus. Developmental and Comparative Immunology 30: 649–657.
- McMahon, T. A. et al. 2014. Amphibians acquire resistance to live and dead fungus overcoming fungal immunosuppression. Nature 511: 224–227.
- Menon, J., V. H. Hoeppner, A. Judd, C. A. Power, and P. A. Bretscher. 2018. A hypothesis for the existence of two types of tuberculosis, reflecting two distinct types of immune failure to control the pathogen, based upon prevalence of mycobacterium-specific IgG subclasses. Scandinavian Journal of Immunology 87:e12665.
- Miller, D., M. Gray, and A. Storfer. 2011. Ecopathology of ranaviruses infecting amphibians. Viruses 3: 2351–2373.
- Morel, P. A., and T. B. Oriss. 1998. Crossregulation between Th1 and Th2 cells. Critical Reviews in Immunology 18: 275–303.
- Olori, J. C., R. Netzband, N. McKean, J. Lowery, K. Parsons, and S. T. Windstam. 2018. Multi-year dynamics of ranavirus, chytridiomycosis, and co-infections in a temperate host assemblage of amphibians. Diseases of Aquatic Organisms 130: 187–197.
- Ortega, N., W. Price, T. Campbell, and J. Rohr. 2015. Acquired and introduced macroparasites of the invasive Cuban treefrog, Osteopilus septentrionalis. International Journal for Parasitology: Parasites and Wildlife 4: 379–384.
- Paul, W. E., and J. Zhu. 2010. How are T(H)2-type immune responses initiated and amplified? Nature Reviews Immunology 10: 225–235.
- Pedersen, A. B., and A. Fenton. 2007. Emphasizing the ecology in parasite community ecology. Trends in Ecology & Evolution 22: 133–139.
- Picco, A. M., J. L. Brunner, and J. P. Collins. 2007. Susceptibility of the endangered California tiger salamander, Ambystoma californiense, to ranavirus infection. Journal of Wildlife Diseases 43: 286–290.
- Piecyk, A., M. Ritter, and M. Kalbe. 2019. The right response at the right time: Exploring helminth immune modulation in sticklebacks by experimental coinfection. Molecular Ecology 28: 2668–2680.
- Piotrowski, J. S., S. L. Annis, and J. E. Longcore. 2004. Physiology of Batrachochytrium dendrobatidis, a chytrid pathogen of amphibians. Mycologia 96: 9–15.
- Price, S. J., W. T. M. Leung, C. J. Owen, R. Puschendorf, C. Sergeant, A. A. Cunningham, F. Balloux, T. W. J. Garner, and R. A. Nichols. 2019. Effects of historic and projected climate change on the range and impacts of an emerging wildlife disease. Global Change Biology 25: 2648–2660.
- R Core Team. 2017. R: a language and environment for statistical computing. R version 3.4.2., R Foundation for Statisical Computing, Vienna Austria.
- Ramsay, C., and J. Rohr. 2021. The application of community ecology theory to co-infections in wildlife hosts. Dryad data set. https://datadryad.org/stash/dataset/doi:10.5061/dryad.djh9w0vxx.
- Ramsey, J. P., L. K. Reinert, L. K. Harper, D. C. Woodhams, and L. A. Rollins-Smith. 2010. Immune defenses against Batrachochytrium dendrobatidis, a fungus linked to global amphibian declines, in the South African clawed frog, Xenopus laevis. Infection and Immunity 78: 3981–3992.
- Relyea, R. A. 2007. Getting out alive: how predators affect the decision to metamorphose. Oecologia 152: 389–400.
- Rohr, J. R., A. A. Elskus, B. S. Shepherd, P. H. Crowley, T. M. McCarthy, J. H. Niedzwiecki, T. Sager, A. Sih, and B. D. Palmer. 2004. Multiple stressors and salamanders: effects of an herbicide, food limitation, and hydroperiod. Ecological Applications 14: 1028–1040.
- Rohr, J. R., T. R. Raffel, and C. A. Hall. 2010. Developmental variation in resistance and tolerance in a multi-host–parasite system. Functional Ecology 24: 1110–1121.
- Rohr, J. R., T. R. Raffel, N. T. Halstead, T. A. McMahon, S. A. Johnson, R. K. Boughton, and L. B. Martin. 2013. Early-life exposure to a herbicide has enduring effects on pathogen-induced mortality. Proceedings of Biological Science 280: 20131502.
- Rojas, S., K. Richards, J. K. Jancovich, and E. W. Davidson. 2005. Influence of temperature on Ranavirus infection in larval salamanders Ambystoma tigrinum. Diseases of Aquatic Organisms 63: 95–100.
- Rollins-Smith, L. A., J. K. Doersam, J. E. Longcore, S. K. Taylor, J. C. Shamblin, C. Cary, and M. A. Zasloff. 2002. Antimicrobial peptide defenses against pathogens associated with global amphibian declines. Developmental and Comparative Immunology 26: 63–72.
- Rosenblum, E. B., T. J. Poorten, M. Settles, and G. K. Murdoch. 2012. Only skin deep: shared genetic response to the deadly chytrid fungus in susceptible frog species. Molecular Ecology 21: 3110–3120.
- Rosenblum, E. B., T. J. Poorten, M. Settles, G. K. Murdoch, J. Robert, N. Maddox, and M. B. Eisen. 2009. Genome-wide transcriptional response of Silurana (Xenopus) tropicalis to infection with the deadly chytrid fungus. PLoS One 4:e6494.
- Scheele, B. C., et al. 2019. Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity. Science 363: 1459–1463.
- Skerratt, L. F., L. Berger, R. Speare, S. Cashins, K. R. McDonald, A. D. Phillott, H. B. Hines, and N. Kenyon. 2007. Spread of chytridiomycosis has caused the rapid global decline and extinction of frogs. EcoHealth 4: 125–134.
- Sousa, W. P. 1992. Interspecific interactions among larval trematode parasites of freshwater and marine snails. American Zoologist 32: 583–592.
- Stuart, S. N., J. S. Chanson, N. A. Cox, B. E. Young, A. S. L. Rodrigues, D. L. Fischman, and R. W. Waller. 2004. Status and trends of amphibian declines and extinctions worldwide. Science 306: 1783–1786.
- Stutz, W. E., A. R. Blaustein, C. J. Briggs, J. T. Hoverman, J. R. Rohr, and P. T. J. Johnson. 2018. Using multi-response models to investigate pathogen coinfections across scales: insights from emerging diseases of amphibians. Methods in Ecology and Evolution 9: 1109–1120.
- Sutherland, J. P. 1974. Multiple stable points in natural communities. American Naturalist 108: 859–873.
- Sutton, W. B., M. J. Gray, R. H. Hardman, R. P. Wilkes, A. J. Kouba, and D. L. Miller. 2014. High susceptibility of the endangered dusky gopher frog to ranavirus. Diseases of Aquatic Organisms 112: 9–16.
- Swanson, S. J., D. Neitzel, K. D. Reed, and E. A. Belongia. 2006. Coinfections acquired from Ixodes ticks. Clinical Microbiology Reviews 19: 708–727.
- Therneau and Lumley, 2019Therneau, T. M., and T. Lumley. 2019. survival: Survival analysis, R version 2.44-1.1. https://github.com/therneau/survival
- Vhora, M. S., and M. G. Bolek. 2013. New host and distribution records for Aplectana hamatospicula (Ascaridida: Cosmocercidae) in Gastrophryne olivacea (Anura: Microhylidae) from the Great Plains U.S.A. Journal of Parasitology 99: 417–420.
- Voyles, J. et al. 2009. Pathogenesis of Chytridiomycosis, a cause of catastrophic amphibian declines. Science 326: 582–585.
- Wake, D. B., and V. T. Vredenburg. 2008. Colloquium paper: are we in the midst of the sixth mass extinction? A view from the world of amphibians. Proceedings of the National Academy of Sciences 105(Supplement 1): 11466–11473.
- Warne, R. W., B. LaBumbard, S. LaGrange, V. T. Vredenburg, and A. Catenazzi. 2016. Co-infection by chytrid fungus and Ranaviruses in wild and harvested frogs in the tropical Andes. PLoS One 11:e0145864.
- Watters, J. L., D. R. Davis, T. Yuri, and C. D. Siler. 2018. Concurrent Infection of Batrachochytrium dendrobatidis and Ranavirus among native Amphibians from northeastern Oklahoma, USA. Journal of Aquatic Animal Health 30: 291–301.
- Wendel, E. S., A. Yaparla, D. V. Koubourli, and L. Grayfer. 2017. Amphibian (Xenopus laevis) tadpoles and adult frogs mount distinct interferon responses to the Frog Virus 3 ranavirus. Virology 503: 12–20.
- Whitfield, S. M., E. Geerdes, I. Chacon, E. Ballestero Rodriguez, R. R. Jimenez, M. A. Donnelly, and J. L. Kerby. 2013. Infection and co-infection by the amphibian chytrid fungus and ranavirus in wild Costa Rican frogs. Diseases of Aquatic Organisms 104: 173–178.
- Wilbur, H. M., and R. A. Alford. 1985. Priority effects in experimental pond communities: responses of Hyla to Bufo and Rana. Ecology 66: 1106–1114.
- Wuerthner, V. P., J. Hua, and J. T. Hoverman. 2017. The benefits of coinfection: trematodes alter disease outcomes associated with virus infection. Journal of Animal Ecology 86: 921–931.
- Yazdanbakhsh, M., P. G. Kremsner, and R. van Ree. 2002. Allergy, parasites, and the hygiene hypothesis. Science 296: 490–494.
- Zelante, T., A. De Luca, C. D'Angelo, S. Moretti, and L. Romani. 2009. IL-17/Th17 in anti-fungal immunity: what's new? European Journal of Immunology 39: 645–648.