Journal list menu
Non-additive effects of foundation species determine the response of aquatic ecosystems to nutrient perturbation
Corresponding Author
Moritz D. Lürig
Center for Adaptation to a Changing Environment (ACE), ETH Zürich, Zürich, CH-8092 Switzerland
Department of Fish Ecology and Evolution, Center for Ecology, Evolution and Biochemistry, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Seestrasse 79, Kastanienbaum, 6047 Switzerland
Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technolog, Überland Strasse 133, Dübendorf, 8600 Switzerland
E-mail: [email protected]
Search for more papers by this authorAnita Narwani
Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technolog, Überland Strasse 133, Dübendorf, 8600 Switzerland
Search for more papers by this authorHannele Penson
Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technolog, Überland Strasse 133, Dübendorf, 8600 Switzerland
Search for more papers by this authorBernhard Wehrli
Department of Surface Waters and Management, Center for Ecology, Evolution and Biochemistry, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Seestrasse 79, Kastanienbaum, 6047 Switzerland
Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Zürich, CH-8092 Switzerland
Search for more papers by this authorPiet Spaak
Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technolog, Überland Strasse 133, Dübendorf, 8600 Switzerland
Search for more papers by this authorBlake Matthews
Department of Fish Ecology and Evolution, Center for Ecology, Evolution and Biochemistry, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Seestrasse 79, Kastanienbaum, 6047 Switzerland
Search for more papers by this authorCorresponding Author
Moritz D. Lürig
Center for Adaptation to a Changing Environment (ACE), ETH Zürich, Zürich, CH-8092 Switzerland
Department of Fish Ecology and Evolution, Center for Ecology, Evolution and Biochemistry, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Seestrasse 79, Kastanienbaum, 6047 Switzerland
Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technolog, Überland Strasse 133, Dübendorf, 8600 Switzerland
E-mail: [email protected]
Search for more papers by this authorAnita Narwani
Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technolog, Überland Strasse 133, Dübendorf, 8600 Switzerland
Search for more papers by this authorHannele Penson
Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technolog, Überland Strasse 133, Dübendorf, 8600 Switzerland
Search for more papers by this authorBernhard Wehrli
Department of Surface Waters and Management, Center for Ecology, Evolution and Biochemistry, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Seestrasse 79, Kastanienbaum, 6047 Switzerland
Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Zürich, CH-8092 Switzerland
Search for more papers by this authorPiet Spaak
Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technolog, Überland Strasse 133, Dübendorf, 8600 Switzerland
Search for more papers by this authorBlake Matthews
Department of Fish Ecology and Evolution, Center for Ecology, Evolution and Biochemistry, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Seestrasse 79, Kastanienbaum, 6047 Switzerland
Search for more papers by this authorCorresponding Editor: Shelley E. Arnott.
Abstract
Eutrophication is a persistent threat to aquatic ecosystems worldwide. Foundation species, namely those that play a central role in the structuring of communities and functioning of ecosystems, are likely important for the resilience of aquatic ecosystems in the face of disturbance. However, little is known about how interactions among such species influence ecosystem responses to nutrient perturbation. Here, using an array (N = 20) of outdoor experimental pond ecosystems (15,000 L), we manipulated the presence of two foundation species, the macrophyte Myriophyllum spicatum and the mussel Dreissena polymorpha, and quantified ecosystem responses to multiple nutrient disturbances, spread over two years. In the first year, we added five nutrient pulses, ramping up from 10 to 50 μg P/L over a 10-week period from mid-July to mid-October, and in the second year, we added a single large pulse of 50 μg P/L in mid-October. We used automated sondes to measure multiple ecosystems properties at high frequency (15-minute intervals), including phytoplankton and dissolved organic matter fluorescence, and to model whole-ecosystem metabolism. Overall, both foundation species strongly affected the ecosystem responses to nutrient perturbation, and, as expected, initially suppressed the increase in phytoplankton abundance following nutrient additions. However, when both species were present, phytoplankton biomass increased substantially relative to other treatment combinations: non-additivity was evident for multiple ecosystem metrics following the nutrient perturbations in both years but was diminished in the intervening months between our perturbations. Overall, these results demonstrate how interactions between foundation species can cause surprisingly strong deviations from the expected responses of aquatic ecosystems to perturbations such as nutrient additions.
Open Research
Open Research
Data and code (Lürig 2021) are available from the Open Science Foundation data repository: https://doi.org/10.17605/OSF.IO/X6V9H.
Supporting Information
Filename | Description |
---|---|
ecy3371-sup-0001-AppendixS1.pdfPDF document, 845.4 KB | Appendix S1 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
Literature Cited
- Allgeier, J. E., A. D. Rosemond, and C. A. Layman. 2011. The frequency and magnitude of non-additive responses to multiple nutrient enrichment. Journal of Applied Ecology 48: 96–101.
- Angelini, C., A. H. Altieri, B. R. Silliman, and M. D. Bertness. 2011. Interactions among foundation species and their consequences for community organization, biodiversity, and conservation. BioScience 61: 782–789.
- Batt, R. D., S. R. Carpenter, J. J. Cole, M. L. Pace, and R. A. Johnson. 2013. Changes in ecosystem resilience detected in automated measures of ecosystem metabolism during a whole-lake manipulation. Proceedings of the National Academy of Sciences USA 110: 17398–17403.
- Batt, R. D., S. R. Carpenter, and A. R. Ives. 2017. Extreme events in lake ecosystem time series. Limnology and Oceanography 2: 63–69.
- Bierman, V. J., J. Kaur, J. V. Depinto, T. J. Feist, and D. W. Dilks. 2005. Modeling the role of zebra mussels in the proliferation of blue-green algae in Saginaw Bay, Lake Huron. Journal of Great Lakes Research 31: 32–55.
- Bürgi, H. R., H. Bührer, and B. Keller. 2003. Long-term changes in functional properties and biodiversity of plankton in Lake Greifensee (Switzerland) in response to phosphorus reduction. Aquatic Ecosystem Health & Management 6: 147–158.
- Carpenter, S. R. 2005. Eutrophication of aquatic ecosystems: bistability and soil phosphorus. Proceedings of the National Academy of Sciences USA 102: 10002–10005.
- Carpenter, S. R., et al. 2011. Early warnings of regime shifts: a whole-ecosystem experiment. Science 332: 1079–1082.
- Carpenter, S. R., and D. M. Lodge. 1986. Effects of submersed macrophytes on ecosystem processes. Aquatic botany 26: 341–370.
- Catalán, N., B. Obrador, and J. L. Pretus. 2014. Ecosystem processes drive dissolved organic matter quality in a highly dynamic water body. Hydrobiologia 728: 111–124.
- Chapin, F. S., P. A. Matson, and P. M. Vitousek. 2011. Species Effects on Ecosystem Processes. Pages 321–336 in F. S. Chapin, P. A. Matson, and P. M. Vitousek, editors. Principles of terrestrial ecosystem ecology. Springer, New York, New York, New York, USA.
- Côté, I. M., E. S. Darling, and C. J. Brown. 2016. Interactions among ecosystem stressors and their importance in conservation. Proceedings of the Royal Society B 283:20152592.
- Darling, E. S., and I. M. Côté. 2008. Quantifying the evidence for ecological synergies. Ecology Letters 11: 1278–1286.
- Dayton, P. K. 1972. Toward an understanding of community resilience and the potential effects of enrichments to the benthos at McMurdo Sound, Antarctica. Pages 81–96 in Proceedings of the colloquium on conservation problems in Antarctica. Allen Press, Lawrence, Kansas, USA.
- Donohue, I., et al. 2016. Navigating the complexity of ecological stability. Ecology Letters 19: 1172–1185.
- Ellison, A. M., et al. 2005. Loss of foundation species: consequences for the structure and dynamics of forested ecosystems. Frontiers in Ecology and the Environment 3: 479–486.
- Ellison, A. M. 2019. Foundation species, non-trophic interactions, and the value of being common. iScience 13: 254–268
- Falkenberg, L. J., B. D. Russell, and S. D. Connell. 2012. Stability of strong species interactions resist the synergistic effects of local and global pollution in kelp forests. PLoS ONE 7:e33841.
- Fishman, D. B., S. A. Adlerstein, H. A. Vanderploeg, G. L. Fahnenstiel, and D. Scavia. 2010. Phytoplankton community composition of Saginaw Bay, Lake Huron, during the zebra mussel (Dreissena polymorpha) invasion: a multivariate analysis. Journal of Great Lakes Research 36: 9–19.
- Fraterrigo, J. M., A. B. Langille, and J. A. Rusak. 2020. Stochastic disturbance regimes alter patterns of ecosystem variability and recovery. PLoS ONE 15:e0229927.
- Gsell, A. S., et al. 2016. Evaluating early-warning indicators of critical transitions in natural aquatic ecosystems. Proceedings of the National Academy of Sciences USA 113: E8089–E8095.
- Gulati, R. D., L. M. Dionisio Pires, and E. Van Donk. 2008. Lake restoration studies: failures, bottlenecks and prospects of new ecotechnological measures. Limnologica 38: 233–247.
- Hillebrand, H., I. Donohue, W. S. Harpole, D. Hodapp, M. Kucera, A. M. Lewandowska, J. Merder, J. M. Montoya, and J. A. Freund. 2020. Thresholds for ecological responses to global change do not emerge from empirical data. Nature Ecology & Evolution 4: 1502–1509.
- Hillebrand, H., and C. Kunze. 2020. Meta-analysis on pulse disturbances reveals differences in functional and compositional recovery across ecosystems. Ecology Letters 23: 575–585.
- Hilt, S., and E. M. Gross. 2008. Can allelopathically active submerged macrophytes stabilise clear-water states in shallow lakes? Basic and Applied Ecology 9: 422–432.
- Iacarella, J. C., J. L. Barrow, A. Giani, B. E. Beisner, and I. Gregory-Eaves. 2018. Shifts in algal dominance in freshwater experimental ponds across differing levels of macrophytes and nutrients. Ecosphere 9:e02086.
- Ibelings, B. W., R. Portielje, E. H. R. R. Lammens, R. Noordhuis, M. S. van den Berg, W. Joosse, and M. L. Meijer. 2007. Resilience of alternative stable states during the recovery of shallow lakes from eutrophication: Lake Veluwe as a case study. Ecosystems 10: 4–16.
- Ives, A. R. 1995. Measuring resilience in stochastic systems. Ecological Monographs 65: 217–233.
- Jackson, M. C., C. J. G. Loewen, R. D. Vinebrooke, and C. T. Chimimba. 2016. Net effects of multiple stressors in freshwater ecosystems: a meta-analysis. Global Change Biology 22: 180–189.
- James, W. F., J. W. Barko, and H. L. Eakin. 1997. Nutrient regeneration by the zebra mussel (Dreissena polymorpha). Journal of Freshwater Ecology 12: 209–216.
- Jeppesen, E., M. Sondergaard, M. Sondergaard, and K. Christoffersen. 1998. Pages 115–133 in L. M. M. Caldwell, G. Heldmaier, O. L. Lange, E.-D. Schulze, and U. Sommer, editors. The structuring role of submerged macrophytes in lakes. Springer, New York, New York, USA.
- Johengen, T. H., T. F. Nalepa, G. L. Fahnenstiel, and G. Goudy. 1995. Nutrient changes in Saginaw Bay, Lake Huron, after the establishment of the zebra mussel (Dreissena polymorpha). Journal of Great Lakes Research 21: 449–464.
- Karatayev, A. Y., L. E. Burlakova, C. Pennuto, J. Ciborowski, V. A. Karatayev, P. Juette, and M. Clapsadl. 2014a. Twenty five years of changes in Dreissena spp. populations in Lake Erie. Journal of Great Lakes Research 40: 550–559.
- Karatayev, V. A., A. Y. Karatayev, L. E. Burlakova, and L. G. Rudstam. 2014b. Eutrophication and Dreissena invasion as drivers of biodiversity: a century of change in the mollusc community of Oneida Lake. PLoS ONE 9:e101388.
- Kéfi, S., et al. 2012. More than a meal… integrating non-feeding interactions into food webs. Ecology Letters 15: 291–300.
- Kéfi, S., M. Holmgren, and M. Scheffer. 2016. When can positive interactions cause alternative stable states in ecosystems? Functional Ecology 30: 88–97.
- Korner, S., and A. Nicklisch. 2002. Allelopathic growth inhibition of selected phytoplankton species by submerged macrophytes. Journal of Phycology 38: 862–871.
- Leys, C., C. Ley, O. Klein, P. Bernard, and L. Licata. 2013. Detecting outliers: do not use standard deviation around the mean, use absolute deviation around the median. Journal of Experimental Social Psychology 49: 764–766.
- Loreau, M., et al. 2001. Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294: 804–808.
- Lürig, M. 2021. Data from: non-additive effects of foundation species determine the response of aquatic ecosystems to nutrient perturbation. Open Science Framework. https://doi.org/10.17605/OSF.IO/X6V9H
- Lürig, M. D., R. J. Best, V. Dakos, and B. Matthews. 2020. Submerged macrophytes affect the temporal variability of aquatic ecosystems. Freshwater Biology 66: 421–435.
- Lürling, M., M. M. E. Mello, F. van Oosterhout, L. de Senerpont Domis, and M. M. Marinho. 2018. Response of natural cyanobacteria and algae assemblages to a nutrient pulse and elevated temperature. Frontiers in Microbiology 9:1851.
- McLaughlan, C., and D. C. Aldridge. 2013. Cultivation of zebra mussels (Dreissena polymorpha) within their invaded range to improve water quality in reservoirs. Water Research 47: 4357–4369.
- Nakai, S., Y. Inoue, and M. Hosomi. 2001. Algal growth inhibition effects and inducement modes by plant-producing phenols. Water Research 35: 1855–1859.
- Nakai, S., G. Zou, T. Okuda, W. Nishijima, M. Hosomi, and M. Okada. 2012. Polyphenols and fatty acids responsible for anti-cyanobacterial allelopathic effects of submerged macrophyte Myriophyllum spicatum. Water Science and Technology: A Journal of the International Association on Water Pollution Research 66: 993–999.
- Narwani, A., M. Reyes, A. L. Pereira, H. Penson, S. R. Dennis, S. Derrer, P. Spaak, and B. Matthews. 2019. Interactive effects of foundation species on ecosystem functioning and stability in response to disturbance. Proceedings of the Royal Society B 286:20191857.
- Nielsen, A., L. Liboriussen, D. Trolle, F. Landkildehus, M. Søndergaard, T. L. Lauridsen, M. Søndergaard, S. E. Larsen, and E. Jeppesen. 2013. Daily net ecosystem production in lakes predicted from midday dissolved oxygen saturation: analysis of a five-year high frequency dataset from 24 mesocosms with contrasting trophic states and temperatures: predicting lake net ecosystem production. Limnology and Oceanography, Methods/ASLO 11: 202–212.
- Olff, H., D. Alonso, M. P. Berg, B. K. Eriksson, M. Loreau, T. Piersma, and N. Rooney. 2009. Parallel ecological networks in ecosystems. Philosophical Transactions of the Royal Society B 364: 1755–1779.
- Paine, R. T., M. J. Tegner, and E. A. Johnson. 1998. Compounded perturbations yield ecological surprises. Ecosystems 1: 535–545.
- Pennekamp, F., et al. 2018. Biodiversity increases and decreases ecosystem stability. Nature 563: 109–112.
- Petchey, O. L., et al. 2015. The ecological forecast horizon, and examples of its uses and determinants. Ecology Letters 18: 597–611.
- Reitsema, R. E., P. Meire, and J. Schoelynck. 2018. The future of freshwater macrophytes in a changing world: dissolved organic carbon quantity and quality and its interactions with macrophytes. Frontiers in Plant Science 9:629.
- Russo, S., M. Lürig, W. Hao, B. Matthews, and K. Villez. 2020. Active learning for anomaly detection in environmental data. Environmental Modelling & Software 134:104869.
- Scheffer, M., et al. 2012. Anticipating critical transitions. Science 338: 344–348.
- Scheffer, M., S. H. Hosper, M. L. Meijer, B. Moss, and E. Jeppesen. 1993. Alternative equilibria in shallow lakes. Trends in Ecology & Evolution 8: 275–279.
- Scheffer, M., S. Szabo, A. Gragnani, E. H. Van Nes, S. Rinaldi, N. Kautsky, J. Norberg, R. M. M. Roijackers, and R. J. M. Franken. 2003. Floating plant dominance as a stable state. Proceedings of the National Academy of Sciences USA 100: 4040–4045.
- Smith, V. H. 2003. Eutrophication of freshwater and coastal marine ecosystems: a global problem. Environmental Science and Pollution Research International 10: 126–139.
- Smith, V. H., and D. W. Schindler. 2009. Eutrophication science: where do we go from here? Trends in Ecology & Evolution 24: 201–207.
- Smith, V. H., G. D. Tilman, and J. C. Nekola. 1999. Eutrophication: impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environmental Pollution 100: 179–196.
- Søndergaard, M., J. P. Jensen, and E. Jeppesen. 2003. Role of sediment and internal loading of phosphorus in shallow lakes. Hydrobiologia 506: 135–145.
- Spears, B. M., et al. 2017. Ecological resilience in lakes and the conjunction fallacy. Nature Ecology & Evolution 1: 1616–1624.
- Stachowicz, J. J. 2001. Mutualism, facilitation, and the structure of ecological communities. BioScience 51: 235–246.
- Staehr, P. A., D. Bade, M. C. Van de Bogert, G. R. Koch, C. Williamson, P. Hanson, J. J. Cole, and T. Kratz. 2010. Lake metabolism and the diel oxygen technique: state of the science: guideline for lake metabolism studies. Limnology and Oceanography, Methods/ASLO 8: 628–644.
- Strayer, D. L., et al. 2019. Long-term population dynamics of dreissenid mussels (Dreissena polymorpha and D. rostriformis): a cross-system analysis. Ecosphere 10:e02701.
- Suttle, K. B., M. A. Thomsen, and M. E. Power. 2007. Species interactions reverse grassland responses to changing climate. Science 315: 640–642.
- Tekin, E., E. S. Diamant, M. Cruz-Loya, V. Enriquez, N. Singh, V. M. Savage, and P. J. Yeh. 2020. Using a newly introduced framework to measure ecological stressor interactions. Ecology Letters 23: 1391–1403.
- Thompson, P. L., M. M. MacLennan, and R. D. Vinebrooke. 2018. Species interactions cause non-additive effects of multiple environmental stressors on communities. Ecosphere 9:e02518.
- van Nes, E. H., W. J. Rip, and M. Scheffer. 2007. A theory for cyclic shifts between alternative states in shallow lakes. Ecosystems 10: 17–27.
- Vanderploeg, H. A., J. R. Liebig, W. W. Carmichael, M. A. Agy, T. H. Johengen, G. L. Fahnenstiel, and T. F. Nalepa. 2001. Zebra mussel (Dreissena polymorpha) selective filtration promoted toxic Microcystis blooms in Saginaw Bay (Lake Huron) and Lake Erie. Canadian Journal of Fisheries and Aquatic Sciences 58: 1208–1221.
- Welch, E. B., and G. D. Cooke. 2005. Internal phosphorus loading in shallow lakes: importance and control. Lake and Reservoir Management 21: 209–217.
- Yamamichi, M., T. Kazama, K. Tokita, I. Katano, H. Doi, T. Yoshida, N. G. Hairston, and J. Urabe. 2018. A shady phytoplankton paradox: when phytoplankton increases under low light. Proceedings of the Royal Society B 285:20181067.
- Zelnik, Y. R., J.-F. Arnoldi, and M. Loreau. 2018. The impact of spatial and temporal dimensions of disturbances on ecosystem stability. Frontiers in Ecology and Evolution 6:224.