Journal list menu
Deep learning with citizen science data enables estimation of species diversity and composition at continental extents
Corresponding Author
Courtney L. Davis
Cornell Laboratory of Ornithology, Cornell University, Ithaca, New York, USA
Correspondence
Courtney L. Davis
Email: [email protected]
Search for more papers by this authorYiwei Bai
Department of Computer Science, Cornell University, Ithaca, New York, USA
Search for more papers by this authorDi Chen
Department of Computer Science, Cornell University, Ithaca, New York, USA
Search for more papers by this authorOrin Robinson
Cornell Laboratory of Ornithology, Cornell University, Ithaca, New York, USA
Search for more papers by this authorViviana Ruiz-Gutierrez
Cornell Laboratory of Ornithology, Cornell University, Ithaca, New York, USA
Search for more papers by this authorCarla P. Gomes
Department of Computer Science, Cornell University, Ithaca, New York, USA
Search for more papers by this authorDaniel Fink
Cornell Laboratory of Ornithology, Cornell University, Ithaca, New York, USA
Search for more papers by this authorCorresponding Author
Courtney L. Davis
Cornell Laboratory of Ornithology, Cornell University, Ithaca, New York, USA
Correspondence
Courtney L. Davis
Email: [email protected]
Search for more papers by this authorYiwei Bai
Department of Computer Science, Cornell University, Ithaca, New York, USA
Search for more papers by this authorDi Chen
Department of Computer Science, Cornell University, Ithaca, New York, USA
Search for more papers by this authorOrin Robinson
Cornell Laboratory of Ornithology, Cornell University, Ithaca, New York, USA
Search for more papers by this authorViviana Ruiz-Gutierrez
Cornell Laboratory of Ornithology, Cornell University, Ithaca, New York, USA
Search for more papers by this authorCarla P. Gomes
Department of Computer Science, Cornell University, Ithaca, New York, USA
Search for more papers by this authorDaniel Fink
Cornell Laboratory of Ornithology, Cornell University, Ithaca, New York, USA
Search for more papers by this authorHandling Editor: James M. D. Speed
Courtney L. Davis and Yiwei Bai contributed equally to this work.
Abstract
Effective solutions to conserve biodiversity require accurate community- and species-level information at relevant, actionable scales and across entire species' distributions. However, data and methodological constraints have limited our ability to provide such information in robust ways. Herein we employ a Deep-Reasoning Network implementation of the Deep Multivariate Probit Model (DMVP-DRNets), an end-to-end deep neural network framework, to exploit large observational and environmental data sets together and estimate landscape-scale species diversity and composition at continental extents. We present results from a novel year-round analysis of North American avifauna using data from over nine million eBird checklists and 72 environmental covariates. We highlight the utility of our information by identifying critical areas of high species diversity for a single group of conservation concern, the North American wood warblers, while capturing spatiotemporal variation in species' environmental associations and interspecific interactions. In so doing, we demonstrate the type of accurate, high-resolution information on biodiversity that deep learning approaches such as DMVP-DRNets can provide and that is needed to inform ecological research and conservation decision-making at multiple scales.
CONFLICT OF INTEREST STATEMENT
The authors declare no conflicts of interest.
Open Research
DATA AVAILABILITY STATEMENT
The complete list of data analyzed in this study is provided in Appendix S3. The eBird data used to conduct this study are fully described in Appendix S3 and freely available on the eBird website at https://ebird.org/science/use-ebird-data. Data related to the Checklist Calibration Index are sensitive because they pertain to the behavior and location of individual eBird users and cannot be made publicly available; however, Checklist Calibration Index data supporting this research can be directly requested by contacting [email protected] and requesting access to the Checklist Calibration Index associated with the 2018 eBird Reference Dataset under a data sharing agreement. Model code and other nonsensitive data (Chen et al., 2023) are available on Zenodo at https://doi.org/10.5281/zenodo.8297796.
Supporting Information
Filename | Description |
---|---|
ecy4175-sup-0001-AppendixS1.pdfPDF document, 197.1 KB | Appendix S1. |
ecy4175-sup-0002-AppendixS2.pdfPDF document, 331.3 KB | Appendix S2. |
ecy4175-sup-0003-AppendixS3.pdfPDF document, 126.5 KB | Appendix S3. |
ecy4175-sup-0004-AppendixS4.pdfPDF document, 2.1 MB | Appendix S4. |
ecy4175-sup-0005-VideoS1.mp4MPEG-4 video, 25.8 MB | Video S1. |
ecy4175-sup-0006-VideoS1_Metadata.pdfPDF document, 59.1 KB | Video S1 Legend. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- Ådahl, E., P. Lundberg, and N. Jonzén. 2006. “From Climate Change to Population Change: The Need to Consider Annual Life Cycles.” Global Change Biology 12: 1627–1633.
- Ahumada, J. A., E. Fegraus, T. Birch, N. Flores, R. Kays, T. G. O'Brien, J. Palmer, et al. 2020. “Wildlife Insights: A Platform to Maximize the Potential of Camera Trap and Other Passive Sensor Wildlife Data for the Planet.” Environmental Conservation 47: 1–6.
- Amatulli, G., S. Domisch, M.-N. Tuanmu, B. Parmentier, A. Ranipeta, J. Malczyk, and W. Jetz. 2018. “Data Descriptor: A Suite of Global, Cross-Scale Topographic Variables for Environmental and Biodiversity Modeling.” Scientific Data 5: 180040. https://doi.org/10.1038/sdata.2018.40.
- Becker, J. J., D. T. Sandwell, W. H. F. Smith, J. Braud, B. Binder, J. Depner, D. Fabre, et al. 2009. “Global Bathymetry and Elevation Data at 30 Arc Seconds Resolution: Srtm30_plus.” Marine Geodesy 32: 355–371. https://doi.org/10.1080/01490410903297766.
- Bird Studies Canada and NABCI. 2014. Bird Conservation Regions. Bird Studies Canada on behalf of the North American Bird Conservation Initiative.
- Birkhofer, K., E. Diehl, J. Andersson, J. Ekroos, A. Früh-Müller, F. Machnikowski, V. L. Mader, et al. 2015. “Ecosystem Services—Current Challenges and Opportunities for Ecological Research.” Frontiers in Ecology and Evolution 2: fevo.2014.00087.
- Botella, C., A. Joly, P. Bonnet, P. Monestiez, and F. Munoz. 2018. “ A Deep Learning Approach to Species Distribution Modelling.” In Multimedia Tools and Applications for Environmental & Biodiversity Informatics, edited by A. Joly, S. Vrochidis, K. Karatzas, A. Karppinen, and P. Bonnet, 169–199. Cham: Springer International Publishing.
10.1007/978-3-319-76445-0_10 Google Scholar
- Butchart, S. H. M., M. Walpole, B. Collen, A. van Strien, J. P. W. Scharlemann, R. E. A. Almond, J. E. M. Baillie, et al. 2010. “Global Biodiversity: Indicators of Recent Declines.” Science 328: 1164–1168.
- Cao, C., F. J. De Luccia, X. Xiong, R. Wolfe, and F. Weng. 2014. “Early on-Orbit Performance of the Visible Infrared Imaging Radiometer Suite Onboard the Suomi National Polar-Orbiting Partnership (S-NPP) Satellite.” IEEE Transactions on Geoscience and Remote Sensing 52: 1142–1156. https://doi.org/10.1109/TGRS.2013.2247768.
- Capmourteres, V., and M. Anand. 2016. “‘Conservation Value’: A Review of the Concept and its Quantification.” Ecosphere 7: e01476. https://doi.org/10.1002/ecs2.1476.
- Cardinale, B. J., J. E. Duffy, A. Gonzalez, D. U. Hooper, C. Perrings, P. Venail, A. Narwani, et al. 2012. “Biodiversity Loss and its Impact on Humanity.” Nature 486: 59–67.
- Carroll, M. L., C. M. DiMiceli, M. R. Wooten, A. B. Hubbard, R. A. Sohlberg, and J. R. G. Townshend. 2017. Mod44w Modis/Terra Land Water Mask Derived from Modis and Srtm 13 Global 250m Sin Grid v006. Sioux Falls, SD: NASA EOSDIS Land Process DAAC. https://doi.org/10.5067/MODIS/MOD44W.006.
- Chandler, M., L. See, K. Copas, A. M. Z. Bonde, B. C. López, F. Danielsen, J. K. Legind, et al. 2017. “Contribution of Citizen Science towards International Biodiversity Monitoring.” Biological Conservation 213: 280–294.
- Chase, J. M., B. J. McGill, P. L. Thompson, L. H. Antão, A. E. Bates, S. A. Blowes, M. Dornelas, et al. 2019. “Species Richness Change across Spatial Scales.” Oikos 128: 1079–1091.
- Chen, D., Y. Bai, S. Ament, W. Zhao, D. Guevarra, L. Zhou, B. Selman, R. B. van Dover, J. M. Gregoire, and C. P. Gomes. 2021. “Automating Crystal-Structure Phase Mapping by Combining Deep Learning with Constraint Reasoning.” Nature Machine Intelligence 3: 812–822.
10.1038/s42256-021-00384-1 Google Scholar
- Chen, D., Y. Bai, D. Fink, and C. P. Gomes. 2023. “Deep Reasoning Network Implementation of a Deep Multivariate Probit Model (DMVP-DRNets) Code (v1.0).” Zenodo. https://doi.org/10.5281/zenodo.8297796.
10.5281/zenodo.8297796 Google Scholar
- Chen, D., Y. Bai, W. Zhao, S. Ament, J. M. Gregoire, and C. P. Gomes. 2020. “ Deep Reasoning Networks for Unsupervised Pattern de-Mixing with Constraint Reasoning.” In Proceedings of the 37th International Conference on Machine Learning 1500–1509. PMLR.
- Chen, D., Y. Xue, D. Fink, S. Chen, and C. P. Gomes. 2017. “ Deep Multi-Species Embedding.” In Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence 3639–3646. Melbourne: International Joint Conferences on Artificial Intelligence Organization.
10.24963/ijcai.2017/509 Google Scholar
- Chen, D., Y. Xue, and C. Gomes. 2018. “ End-to-End Learning for the Deep Multivariate Probit Model.” In Proceedings of the 35th International Conference on Machine Learning 932–941. Stockholm: PMLR.
- Chesser, R. T., S. M. Billerman, K. J. Burns, C. Cicero, J. L. Dunn, A. W. Kratter, I. J. Lovette, et al. 2020. Check-List of North American Birds (Online). American Ornithological Society. https://checklist.americanornithology.org/taxa/.
- de Vries, A., and B. D. Ripley. 2020. “ggdendro: Create Dendrograms and Tree Diagrams Using ‘ggplot2’.” R Package Version 0.1.23. https://CRAN.R-project.org/package=ggdendro.
- Díaz, S., J. Settele, E. S. Brondízio, H. T. Ngo, J. Agard, A. Arneth, P. Balvanera, et al. 2019. “Pervasive Human-Driven Decline of Life on Earth Points to the Need for Transformative Change.” Science 366: eaax3100. https://doi.org/10.1126/science.aax3100.
- Dorazio, R. M., and J. A. Royle. 2005. “Estimating Size and Composition of Biological Communities by Modeling the Occurrence of Species.” Journal of the American Statistical Association 100: 389–398.
- Dubayah, R., J. B. Blair, S. Goetz, L. Fatoyinbo, M. Hansen, S. Healey, M. Hofton, et al. 2020. “The Global Ecosystem Dynamics Investigation: High-Resolution Laser Ranging of the Earth's Forests and Topography.” Science of Remote Sensing 1: 100002. https://doi.org/10.1016/j.srs.2020.100002.
10.1016/j.srs.2020.100002 Google Scholar
- Erickson, K., and A. B. Smith. 2023. “Modeling the Rarest of the Rare: A Comparison between Multi-Species Distribution Models, Ensembles of Small Models, and Single-Species Models at Extremely Low Sample Sizes.” Ecography 2023: e06500. https://doi.org/10.1111/ecog.06500.
- Farley, S. S., A. Dawson, S. J. Goring, and J. W. Williams. 2018. “Situating Ecology as a Big-Data Science: Current Advances, Challenges, and Solutions.” BioScience 68: 563–576.
- Ferrier, S., and A. Guisan. 2006. “Spatial Modelling of Biodiversity at the Community Level.” Journal of Applied Ecology 43: 393–404.
- Fink, D., T. Auer, A. Johnston, V. Ruiz-Gutierrez, W. M. Hochachka, and S. Kelling. 2020. “Modeling Avian Full Annual Cycle Distribution and Population Trends with Citizen Science Data.” Ecology 30: e02056. https://doi.org/10.1002/eap.2056.
10.1002/eap.2056 Google Scholar
- Fink, D., W. M. Hochachka, B. Zuckerberg, D. W. Winkler, B. Shaby, M. A. Munson, G. Hooker, M. Riedewald, D. Sheldon, and S. Kelling. 2010. “Spatiotemporal Exploratory Models for Broad-Scale Survey Data.” Ecological Applications 20: 2131–2147.
- Fithian, W., and T. Hastie. 2014. “Local Case-Control Sampling: Efficient Subsampling in Imbalanced Data Sets.” Annals of Statistics 42: 1693–1724.
- Fleishman, E., R. Noss, and B. Noon. 2006. “Utility and Limitations of Species Richness Metrics for Conservation Planning.” Ecological Indicators 6: 543–553.
- Francis, A. P., and D. J. Currie. 2003. “A Globally Consistent Richness-Climate Relationship for Angiosperms.” The American Naturalist 161: 523–536.
- Galili, T. 2015. “Dendextend: An R Package for Visualizing, Adjusting and Comparing Trees of Hierarchical Clustering.” Bioinformatics 31: 3718–3720.
- Gomes, C. P., D. Fink, R. B. van Dover, and J. M. Gregoire. 2021. “Computational Sustainability Meets Materials Science.” Nature Reviews Materials 6: 645–647.
- Gotelli, N. J., and R. K. Colwell. 2001. “Quantifying Biodiversity: Procedures and Pitfalls in the Measurement and Comparison of Species Richness.” Ecology Letters 4: 379–391.
- Hooper, D. U., E. C. Adair, B. J. Cardinale, J. E. K. Byrnes, B. A. Hungate, K. L. Matulich, A. Gonzalez, J. E. Duffy, L. Gamfeldt, and M. I. O'Connor. 2012. “A Global Synthesis Reveals Biodiversity Loss as a Major Driver of Ecosystem Change.” Nature 486: 105–108.
- Hooper, D. U., F. S. Chapin, J. J. Ewel, A. Hector, P. Inchausti, S. Lavorel, J. H. Lawton, et al. 2005. “Effects of Biodiversity on Ecosystem Function: A Consensus of Current Knowledge.” Ecological Monographs 75: 3–35.
- Hurlbert, A. H., and W. Jetz. 2007. “Species Richness, Hotspots, and the Scale Dependence of Range Maps in Ecology and Conservation.” Proceedings of the National Academy of Sciences 104: 13384–13389.
- Jansen, J., S. N. C. Woolley, P. K. Dunstan, S. D. Foster, N. A. Hill, M. Haward, and C. R. Johnson. 2022. “Stop Ignoring Map Uncertainty in Biodiversity Science and Conservation Policy.” Nature Ecology & Evolution 6(7): 828–829. https://doi.org/10.1038/s41559-022-01778-z.
- Jetz, W., M. A. McGeoch, R. Guralnick, S. Ferrier, J. Beck, M. J. Costello, M. Fernandez, et al. 2019. “Essential Biodiversity Variables for Mapping and Monitoring Species Populations.” Nature Ecology & Evolution 3: 539–551.
- Johnston, A., D. Fink, W. M. Hochachka, and S. Kelling. 2018. “Estimates of Observer Expertise Improve Species Distributions from Citizen Science Data.” Methods in Ecology and Evolution 9: 88–97.
- Johnston, A., D. Fink, M. D. Reynolds, W. M. Hochachka, B. L. Sullivan, N. E. Bruns, E. Hallstein, M. S. Merrifield, S. Matsumoto, and S. Kelling. 2015. “Abundance Models Improve Spatial and Temporal Prioritization of Conservation Resources.” Ecological Applications 25: 1749–1756.
- Johnston, A., W. M. Hochachka, M. E. Strimas-Macket, V. Ruiz-Gutierrez, O. J. Robinson, E. T. Miller, T. Auer, S. Kelling, and D. Fink. 2021. “Analytical Guidelines to Increase the Value of Community Science Data: An Example Using eBird Data to Estimate Species Distributions.” Diversity and Distributions 27: 1265–1277.
- Kelling, S., A. Johnston, W. M. Hochachka, M. Iliff, D. Fink, J. Gerbracht, C. Lagoze, et al. 2015. “Can Observation Skills of Citizen Scientists be Estimated Using Species Accumulation Curves?” PLoS One 10: e0139600. https://doi.org/10.1371/journal.pone.0139600.
- Kingma, D. P., and J. Ba. 2017. “Adam: A Method for Stochastic Optimization.” arXiv:1412.6980. https://doi.org/10.48550/arXiv.1412.6980.
10.48550/arXiv.1412.6980 Google Scholar
- Kong, S., J. Bai, J. H. Lee, D. Chen, A. Allyn, M. Stuart, M. Pinsky, K. Mills, and C. Gomes. 2020. “ Deep Hurdle Networks for Zero-Inflated Multi-Target Regression: Application to Multiple Species Abundance Estimation.” In Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence 4375–4381. Yokohama: International Joint Conferences on Artificial Intelligence Organization.
10.24963/ijcai.2020/603 Google Scholar
- La Sorte, F. A., D. Fink, P. J. Blancher, A. D. Rodewald, V. Ruiz-Gutierrez, K. V. Rosenberg, W. M. Hochachka, P. H. Verburg, and S. Kelling. 2017. “Global Change and the Distributional Dynamics of Migratory Bird Populations Wintering in Central America.” Global Change Biology 23: 5284–5296.
- McGarigal, K., S. A. Cushman, and E. Ene. 2012. Fragstats v4: Spatial Pattern Analysis Program for Categorical and Continuous Maps. Amherst: Computer Software Program Produced by the Authors at the University of Massachusetts.
- Merow, C., A. M. Wilson, and W. Jetz. 2017. “Integrating Occurrence Data and Expert Maps for Improved Species Range Predictions: Expert Maps & Point Process Models.” Global Ecology and Biogeography 26: 243–258.
- Monserud, R. A., and R. Leemans. 1992. “Comparing Global Vegetation Maps with the Kappa Statistic.” Ecological Modelling 62: 275–293.
- Myers, N., R. A. Mittermeier, C. G. Mittermeier, G. A. B. da Fonseca, and J. Kent. 2000. “Biodiversity Hotspots for Conservation Priorities.” Nature 403: 853–858.
- Nair, V., and G. E. Hinton. 2010. “ Rectified Linear Units Improve Restricted Boltzmann Machines.” In Proceedings of the 27th international conference on machine learning (ICML-10) 807–814. ICML-10.
- Niku, J., W. Brooks, R. Herliansyah, F. K. C. Hui, S. Taskinen, and D. I. Warton. 2019. “Efficient Estimation of Generalized Linear Latent Variable Models.” PLoS One 14: e0216129. https://doi.org/10.1371/journal.pone.0216129.
- Norberg, A., N. Abrego, F. G. Blanchet, F. R. Adler, B. J. Anderson, J. Anttila, M. B. Araújo, et al. 2019. “A Comprehensive Evaluation of Predictive Performance of 33 Species Distribution Models at Species and Community Levels.” Ecological Monographs 89: e01370. https://doi.org/10.1002/ecm.1370.
- Oliver, R. Y., C. Meyer, A. Ranipeta, K. Winner, and W. Jetz. 2021. “Global and National Trends, Gaps, and Opportunities in Documenting and Monitoring Species Distributions.” PLoS Biology 19: e3001336. https://doi.org/10.1371/journal.pbio.3001336.
- Ovaskainen, O., and J. Soininen. 2011. “Making More out of Sparse Data: Hierarchical Modeling of Species Communities.” Ecology 92: 289–295.
- Ovaskainen, O., G. Tikhonov, A. Norberg, F. Guillaume Blanchet, L. Duan, D. Dunson, T. Roslin, and N. Abrego. 2017. “How to Make More out of Community Data? A Conceptual Framework and its Implementation as Models and Software.” Ecology Letters 20: 561–576.
- Pardieck, K. L., D. J. Ziolkowski, Jr., M. Lutmerding, and M. A. R. Hudson. 2019. North American Breeding Bird Survey Dataset 1966–2018, Version 2018.0. US Geological Survey. Laurel, MD: Patuxent Wildlife Research Center.
- Partners in Flight. 2021. “Avian Conservation Assessment Database, Version 2021.” http://pif.birdconservancy.org/ACAD.
- Pereira, H. M., S. Ferrier, M. Walters, G. N. Geller, R. H. G. Jongman, R. J. Scholes, M. W. Bruford, et al. 2013. “Essential Biodiversity Variables.” Science 339: 277–278.
- Pollock, L. J., R. Tingley, W. K. Morris, N. Golding, R. B. O'Hara, K. M. Parris, P. A. Vesk, and M. A. McCarthy. 2014. “Understanding Co-occurrence by Modelling Species Simultaneously with a Joint Species Distribution Model (JSDM).” Methods in Ecology and Evolution 5: 397–406.
- Reynolds, M. D., B. L. Sullivan, E. Hallstein, S. Matsumoto, S. Kelling, M. Merrifield, D. Fink, et al. 2017. “Dynamic Conservation for Migratory Species.” Science Advances 3: e1700707. https://doi.org/10.1126/sciadv.1700707.
- Robinson, O. J., V. Ruiz-Gutierrez, and D. Fink. 2017. “Correcting for Bias in Distribution Modelling for Rare Species Using Citizen Science Data.” Diversity and Distributions 24(4): 460–472. https://doi.org/10.1111/ddi.12698.
- Rosenberg, K. V., A. M. Dokter, P. J. Blancher, J. R. Sauer, A. C. Smith, P. A. Smith, J. C. Stanton, et al. 2019. “Decline of the North American Avifauna.” Science 366: 120–124.
- Sauer, J. R., J. E. Fallon, and R. Johnson. 2003. “Use of North American Breeding Bird Survey Data to Estimate Population Change for Bird Conservation Regions.” The Journal of Wildlife Management 67: 372–389.
- Sayre, R., S. Noble, S. Hamann, R. Smith, D. Wright, S. Breyer, K. Butler, et al. 2019. “A New 30-Meter Resolution Global Shoreline Vector and Associated Global Islands Database for the Development of Standardized Ecological Coastal Units.” Journal of Operational Oceanography 12: S47–S56. https://doi.org/10.1080/1755876X.2018.1529714.
- Secretariat of the Convention on Biological Diversity. 2020a. “Zero Draft of Post-2020 Global Biodiversity Framework.” United Nations Environment Programme. https://www.cbd.int/doc/c/efb0/1f84/a892b98d2982a829962b6371/wg2020-02-03-en.pdf.
- Secretariat of the Convention on Biological Diversity. 2020b. “Global Biodiversity Outlook 5. Montreal.” https://www.cbd.int/gbo/gbo5/publication/gbo-5-en.pdf.
- Small-Lorenz, S. L., L. A. Culp, T. B. Ryder, T. C. Will, and P. P. Marra. 2013. “A Blind Spot in Climate Change Vulnerability Assessments.” Nature Climate Change 3: 91–93.
- Sullivan, B. L., C. L. Wood, M. J. Iliff, R. E. Bonney, D. Fink, and S. Kelling. 2009. “eBird: A Citizen-Based Bird Observation Network in the Biological Sciences.” Biological Conservation 142: 2282–2292.
- Suzuki, R., and H. Shimodaira. 2006. “Pvclust: An R Package for Assessing the Uncertainty in Hierarchical Clustering.” Bioinformatics 22: 1540–1542.
- Tarekegn, A. N., M. Giacobini, and K. Michalak. 2021. “A Review of Methods for Imbalanced Multi-Label Classification.” Pattern Recognition 118: 107965. https://doi.org/10.1016/j.patcog.2021.107965.
- Theobald, E. J., A. K. Ettinger, H. K. Burgess, L. B. DeBey, N. R. Schmidt, H. E. Froehlich, C. Wagner, et al. 2015. “Global Change and Local Solutions: Tapping the Unrealized Potential of Citizen Science for Biodiversity Research.” Biological Conservation 181: 236–244.
- Thornhill, I., S. Loiselle, K. Lind, and D. Ophof. 2016. “The Citizen Science Opportunity for Researchers and Agencies.” BioScience 66: 720–721.
- Tikhonov, G., L. Duan, N. Abrego, G. Newell, M. White, D. Dunson, and O. Ovaskainen. 2020. “Computationally Efficient Joint Species Distribution Modeling of Big Spatial Data.” Ecology 101: e02929. https://doi.org/10.1002/ecy.2929.
- Tobler, M. W., M. Kéry, F. K. C. Hui, G. Guillera-Arroita, P. Knaus, and T. Sattler. 2019. “Joint Species Distribution Models with Species Correlations and Imperfect Detection.” Ecology 100: e02754. https://doi.org/10.1002/ecy.2754.
- United Nations. 2020. “The Sustainable Development Goals Report.” https://sdgs.un.org/sites/default/files/2020-09/The-Sustainable-Development-Goals-Report-2020.pdf.
- Wadoux, A. M. J. -C., and G. B. M. Heuvelink. 2023. “Uncertainty of Spatial Averages and Totals of Natural Resource Maps.” Methods in Ecology and Evolution 14(5): 1320–1332. https://doi.org/10.1111/2041-210x.14106.
- Warton, D. I., F. G. Blanchet, R. B. O'Hara, O. Ovaskainen, S. Taskinen, S. C. Walker, and F. K. C. Hui. 2015. “So Many Variables: Joint Modeling in Community Ecology.” Trends in Ecology & Evolution 30: 766–779.
- Wilkinson, D. P., N. Golding, G. Guillera-Arroita, R. Tingley, and M. A. McCarthy. 2019. “A Comparison of Joint Species Distribution Models for Presence–Absence Data.” Methods in Ecology and Evolution 10: 198–211.
- Zhao, W., S. Kong, J. Bai, D. Fink, and C. Gomes. 2021. “HOT-VAE: Learning High-Order Label Correlation for Multi-Label Classification Via Attention-Based Variational Autoencoders.” arXiv:2103.06375. https://doi.org/10.48550/arXiv:2103.06375.
10.48550/arXiv:2103.06375 Google Scholar