Journal list menu
Evidence for ecological matching of whole AM fungal communities to the local plant–soil environment
Baoming Ji
Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104 USA
Present address: Department of Biology, Indiana University, 1001 East Third Street, Jordan Hall 149, Bloomington, Indiana 47401 USA. E-mail: [email protected]
Search for more papers by this authorStephen P. Bentivenga
Department of Biology and Microbiology, University of Wisconsin, Oshkosh, Wisconsin 54901 USA
Search for more papers by this authorBrenda B. Casper
Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104 USA
Search for more papers by this authorBaoming Ji
Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104 USA
Present address: Department of Biology, Indiana University, 1001 East Third Street, Jordan Hall 149, Bloomington, Indiana 47401 USA. E-mail: [email protected]
Search for more papers by this authorStephen P. Bentivenga
Department of Biology and Microbiology, University of Wisconsin, Oshkosh, Wisconsin 54901 USA
Search for more papers by this authorBrenda B. Casper
Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104 USA
Search for more papers by this authorCorresponding Editor: J. N. Klironomos.
Abstract
The range of ecological roles exhibited by arbuscular mycorrhizal (AM) fungi depends on functional differences among naturally occurring local assemblages of AM species. While functional differences have been demonstrated among AM fungal species and among geographic isolates of the same species, almost nothing is known about functional differences among whole communities of naturally occurring AM fungi. In the greenhouse, we reciprocally transplanted whole AM fungal communities between plant–soil systems representing a serpentine grassland and a tallgrass prairie, using as hosts two grasses common to both systems. For Sorghastrum nutans, native fungi consistently enhanced plant growth more than fungi switched from the alternate system. For Schizachyrium scoparium, foreign and native fungi promoted plant growth similarly in both the serpentine and prairie systems. Thus, the use of foreign inoculum in restoration could change the relative performance, and potentially the competitive abilities, of co-occurring plant species. Moving AM fungal inocula into foreign environments also caused changes in the taxonomic composition of the resultant spore communities, demonstrating their response to environmental influences. These results provide strong evidence for functional differences among naturally occurring AM communities and suggest that a particular AM fungal community may be better matched ecologically to its local habitat than communities taken from other locations.
Literature Cited
- Amir, H., D. Jasper, and L. Abbott . 2008. Tolerance and induction of tolerance to Ni of arbuscular mycorrhizal fungi from New Caledonian ultramafic soils. Mycorrhiza 19: 1–6.
- Anderson, M. J. and T. J. Willis . 2003. Canonical analysis of principal coordinates: a useful method of constrained ordination for ecology. Ecology 84: 511–525.
- Anderson, R. C., A. E. Liberta, and L. A. Dickman . 1984. Interaction of vascular plants and vesicular–arbuscular mycorrhizal fungi across a soil moisture–nutrient gradient. Oecologia 64: 111–117.
-
Anderson, R. C. and
K. J. Roberts
.
1993.
Mycorrhizae in prairie restoration: response of three Little Bluestem (Schizachyrium scoparium) populations to mycorrhizal inoculum from a single source.
Restoration Ecology
1:
83–87.
10.1111/j.1526-100X.1993.tb00013.x Google Scholar
- Augé, R. M. 2001. Water relations, drought and vesicular–arbuscular mycorrhizal symbiosis. Mycorrhiza 11: 3–42.
- Bennett, A. E. and J. D. Bever . 2007. Mycorrhizal species differentially alter plant growth and response to herbivory. Ecology 88: 210–218.
- Bever, J. D. 2002. Host-specificity of AM fungal population growth rates can generate feedback on plant growth. Plant and Soil 244: 281–290.
- Bever, J. D., S. C. Richardson, B. M. Lawrence, J. Holmes, and M. Watson . 2009. Preferential allocation to beneficial symbiont with spatial structure maintains mycorrhizal mutualism. Ecology Letters 12: 13–21.
- Borowicz, V. A. 2001. Do arbuscular mycorrhizal fungi alter plant–pathogen relations? Ecology 82: 3057–3068.
- Cahill, J. F., E. Elle, G. R. Smith, and B. H. Shore . 2008. Disruption of a belowground mutualism alters interactions between plants and their floral visitors. Ecology 89: 1791–1801.
- Casper, B. B., S. P. Bentivenga, B. Ji, J. H. Doherty, H. M. Edenborn, and D. J. Gustafson . 2008. Plant–soil feedback: testing the generality with the same grasses in serpentine and prairie soils. Ecology 89: 2154–2164.
- Castelli, J. P. and B. B. Casper . 2003. Intraspecific AM fungal variation contributes to plant–fungal feedback in a serpentine grassland. Ecology 84: 323–336.
- Clapp, J. P., J. P. W. Young, J. W. Merryweather, and A. H. Fitter . 1995. Diversity of fungal symbionts in arbuscular mycorrhizas from a natural community. New Phytologist 130: 259–265.
- de la Peña, E., S. R. Echeverría, W. H. van der Putten, H. Freitas, and M. Moens . 2006. Mechanism of control of root-feeding nematodes by mycorrhizal fungi in the dune grass Ammophila arenaria. New Phytologist 169: 829–840.
- Egerton-Warburton, L. M. and E. B. Allen . 2000. Shifts in arbuscular mycorrhizal communities along an anthropogenic nitrogen deposition gradient. Ecological Applications 10: 484–496.
- Fidelibus, M. W., C. A. Martin, and J. C. Stutz . 2001. Geographic isolates of Glomus increase root growth and whole-plant transpiration of Citrus seedlings grown with high phosphorus. Mycorrhiza 10: 231–236.
- Fitter, A. H. 2005. Darkness visible: reflections on underground ecology. Journal of Ecology 93: 231–243.
- Frey-Klett, P., J. Garbaye, and M. Tarkka . 2007. The mycorrhiza helper bacteria revisited. New Phytologist 176: 22–36.
- Gustafson, D. J. and B. B. Casper . 2006. Differential host plant performance as a function of soil arbuscular mycorrhizal fungal communities: experimentally manipulating co-occurring Glomus species. Plant Ecology 183: 257–263.
- Hawkes, C., J. Belnap, C. D'Antonio, and M. Firestone . 2006. Arbuscular mycorrhizal assemblages in native plant roots change in the presence of invasive exotic grasses. Plant and Soil 281: 369–380.
- Helgason, T. and A. H. Fitter . 2009. Natural selection and the evolutionary ecology of the arbuscular mycorrhizal fungi (Phylum Glomeromycota). Journal of Experimental Botany 60: 2465–2480.
-
Helgason, T.,
J. W. Merryweather,
J. Denison,
P. Wilson,
J. P. W. Young, and
A. H. Fitter
.
2002.
Selectivity and functional diversity in arbuscular mycorrhizas of co-occurring fungi and plants from a temperate deciduous woodland.
Journal of Ecology
90:
371–384.
10.1046/j.1365-2745.2001.00674.x Google Scholar
- Hildebrandt, U., M. Kaldorf, and H. Bothe . 1999. The zinc violet and colonization by arbuscular mycorrhizal fungi. Journal of Plant Physiology 154: 709–717.
- Janos, D. P. 2007. Plant responsiveness to mycorrhizas differs from dependence upon mycorrhizas. Mycorrhiza 17: 75–91.
- Jansa, J., F. A. Smith, and S. E. Smith . 2008. Are there benefits of simultaneous root colonization by different arbuscular mycorrhizal fungi? New Phytologist 177: 779–789.
- Ji, B. 2007. Taxonomic and functional diversity of AM fungi in serpentine and prairie grasslands. Dissertation. University of Pennsylvania. Philadelphia, Pennsylvania, USA.
- Johnson, N. C. 1993. Can fertilization of soil select less mutualistic mycorrhizae? Ecological Applications 3: 749–757.
- Johnson, N. C., G. W. T. Wilson, M. A. Bowker, J. Wilson, and R. M. Miller . 2010. Resource limitation is a driver of local adaptation in mycorrhizal symbioses. Proceedings of the National Academy of Sciences USA 107: 2093–2098.
- Kiers, E. T., C. E. Lovelock, E. L. Krueger, and E. A. Herre . 2000. Differential effects of tropical arbuscular mycorrhizal fungal inocula on root colonization and tree seedling growth: implications for tropical forest diversity. Ecology Letters 3: 106–113.
- Klironomos, J. N. 2002. Feedback with soil biota contributes to plant rarity and invasiveness in communities. Nature 417: 67–70.
- Klironomos, J. N. 2003. Variation in plant response to native and exotic arbuscular mycorrhizal fungi. Ecology 84: 2292–2301.
- Klugh, K. R. and J. R. Cumming . 2007. Variations in organic acid exudation and aluminum resistance among arbuscular mycorrhizal species colonizing Liriodendron tulipifera. Tree Physiology 27: 1103–1112.
-
Koch, A. M.,
D. Croll, and
I. R. Sanders
.
2006.
Genetic variability in a population of arbuscular mycorrhizal fungi causes variation in plant growth.
Ecology Letters
9:
103–110.
10.1111/j.1461-0248.2005.00853.x Google Scholar
- Koske, R. E. and J. N. Gemma . 1989. A modified procedure for staining roots to detect VA-mycorrhizas. Mycological Research 92: 486–505.
- Kula, A. A. R., D. C. Hartnett, and G. W. T. Wilson . 2005. Effects of mycorrhizal symbiosis on tallgrass prairie plant–herbivore interactions. Ecology Letters 8: 61–69.
- Lambert, D. H., H. Cole, and D. E. Baker . 1980. Adaptation of vesicular–arbuscular mycorrhizae to edaphic factors. New Phytologist 85: 513–520.
-
Lekberg, Y.,
R. T. Koide,
J. R. Rohr,
L. Aldrich-Wolfe, and
J. B. Morton
.
2007.
Role of niche restrictions and dispersal in the composition of arbuscular mycorrhizal fungal communities.
Journal of Ecology
95:
95–105.
10.1111/j.1365-2745.2006.01193.x Google Scholar
- Lilleskov, E. A. and J. L. Parrent . 2007. Can we develop general predictive models of mycorrhizal fungal community–environment relationships? New Phytologist 174: 250–256.
- Malcová, R., J. Rydlová, and M. Vosátka . 2003. Metal-free cultivation of Glomus sp. BEG 140 isolated from Mn-contaminated soil reduces tolerance to Mn. Mycorrhiza 13: 151–157.
- McGonigle, T. P., M. H. Miller, D. G. Evans, G. L. Fairchild, and J. A. Swan . 1990. A new method which gives an objective measure of colonization of roots by vesicular–arbuscular mycorrhizal fungi. New Phytologist 115: 495–501.
- McKenney, M. C. and D. L. Lindsey . 1987. Improved method for quantifying endomycorrhizal fungal spores from soil. Mycologia 79: 779–782.
- Moora, M., M. Öpik, R. Sen, and M. Zobel . 2004. Native arbuscular mycorrhizal fungal communities differentially influence the seedling performance of rare and common Pulsatilla species. Functional Ecology 18: 554–562.
- Morton, J. B., S. P. Bentivenga, and J. D. Bever . 1995. Discovery, measurement, and interpretation of diversity in arbuscular endomycorrhizal fungi (Glomales, Zygomycetes). Canadian Journal of Botany 73: S25–S32.
- Munkvold, L., R. Kjøller, M. Vestberg, S. Rosendahl, and I. Jakobsen . 2004. High functional diversity within species of arbuscular mycorrhizal fungi. New Phytologist 164: 357–364.
- Öpik, M., M. Moora, J. Liira, and M. Zobel . 2006. Composition of root-colonizing arbuscular mycorrhizal fungal communities in different ecosystems around the globe. Journal of Ecology 94: 778–790.
- Porter, W. M., A. D. Robson, and L. K. Abbott . 1987. Field survey of the distribution of vesicular arbuscular mycorrhizal fungi in relation to soil pH. Journal of Applied Ecology 24: 659–662.
- Rillig, M. C. and D. L. Mummey . 2006. Mycorrhizas and soil structure. New Phytologist 171: 41–53.
- Rosendahl, S. 2008. Communities, populations and individuals of arbuscular mycorrhizal fungi. New Phytologist 178: 253–266.
- Ryan, M. H., A. F. van Herwaarden, J. F. Angus, and J. A. Kirkegaard . 2005. Reduced growth of autumn-sown wheat in a low-P soil is associated with high colonisation by arbuscular mycorrhizal fungi. Plant and Soil 270: 275–286.
- Sanders, I. R. 2004. Plant and arbuscular mycorrhizal fungal diversity: are we looking at the relevant levels of diversity and are we using the right techniques? New Phytologist 164: 415–418.
- SAS Institute. 2005. JMP version 5.1. SAS Institute, Inc.. Cary, North Carolina, USA.
- Schechter, S. P. and T. D. Bruns . 2008. Serpentine and non-serpentine ecotypes of Collinsia sparsiflora associate with distinct arbuscular mycorrhizal fungal assemblages. Molecular Ecology 17: 3198–3210.
- Schenck, N. C. and Y. Pérez . 1990. Manual for the identification of VA mycorrhizal fungi. Synergistic Publications. Gainesville, Florida, USA.
- Schultz, P. A., R. M. Miller, J. D. Jastrow, C. V. Rivetta, and J. D. Bever . 2001. Evidence of a mycorrhizal mechanism for the adaptation of Andropogon gerardii (Poaceae) to high- and low-nutrient prairies. American Journal of Botany 88: 1650–1656.
- Shah, M. A., Z. Reshi, and I. Rashid . 2008. Mycorrhizal source and neighbour identity differently influence Anthemis cotula L. invasion in the Kashmir Himalaya, India. Applied Soil Ecology 40: 330–337.
- Smith, S. E., S. Dickson, and F. A. Smith . 2001. Nutrient transfer in arbuscular mycorrhizas: how are fungal and plant processes integrated? Australian Journal of Plant Physiology 28: 685–696.
- Stahl, P. D. and W. K. Smith . 1984. Effects of different geographic isolates of Glomus on the water relations of Agropyron smithii. Mycologia 76: 261–267.
- Streitwolf-Engel, R., T. Boller, A. Wiemken, and I. R. Sanders . 1997. Clonal growth traits of two Prunella species are determined by co-occurring arbuscular fungi from a calcareous grassland. Journal of Ecology 85: 181–191.
- Vandenkoornhuyse, P., R. Husband, T. J. Daniell, I. J. Watson, J. M. Duck, A. H. Fitter, and J. P. W. Young . 2002. Arbuscular mycorrhizal community composition associated with two plant species in a grassland ecosystem. Molecular Ecology 11: 1555–1564.
- van der Heijden, M. G. A., T. Boller, A. Wiemken, and I. R. Sanders . 1998a. Different arbuscular mycorrhizal fungal species are potential determinants of plant community structure. Ecology 79: 2082–2091.
- van der Heijden, M. G. A., J. N. Klironomos, M. Ursic, P. Moutoglis, R. Streitwolf-Engel, T. Boller, A. Wiemken, and I. R. Sanders . 1998b. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396: 69–72.
-
van der Heijden, M. G. A. and
T. R. Scheublin
.
2007.
Functional traits in mycorrhizal ecology: their use for predicting the impact of arbuscular mycorrhizal fungal communities on plant growth and ecosystem functioning.
New Phytologist
174:
244–250.
10.1111/j.1469-8137.2007.02041.x Google Scholar
- Vivas, A., A. Marulanda, J. M. Ruiz-Lozano, J. M. Barea, and R. Azcon . 2003. Influence of a Bacillus sp. on physiological activities of two arbuscular mycorrhizal fungi and on plant responses to PEG-induced drought stress. Mycorrhiza 13: 249–256.
- Vogelsang, K. M., H. L. Reynolds, and J. D. Bever . 2006. Mycorrhizal fungal identity and richness determine the diversity and productivity of a tallgrass prairie system. New Phytologist 172: 554–562.
- Weinbaum, B. S., M. F. Allen, and E. B. Allen . 1996. Survival of arbuscular mycorrhizal fungi following reciprocal transplanting across the Great Basin, USA. Ecological Applications 6: 1365–1372.
- Weissenhorn, I., A. Glashoff, C. Leyval, and J. Berthelin . 1994. Differential tolerance to Cd and Zn of arbuscular mycorrhizal (AM) fungal spores isolated from heavy metal-polluted and unpolluted soils. Plant and Soil 167: 189–196.
- Wilson, G. W. T. and D. C. Hartnett . 1998. Interspecific variation in plant responses to mycorrhizal colonization in tallgrass prairie. American Journal of Botany 85: 1732–1738.