Journal list menu
Evaluation of continental carbon cycle simulations with North American flux tower observations
Corresponding Author
Brett M. Raczka
Department of Meteorology, Pennsylvania State University, 503 Walker Building, University Park, Pennsylvania 16802-5013 USA
E-mail: [email protected]Search for more papers by this authorKenneth J. Davis
Department of Meteorology, Pennsylvania State University, 503 Walker Building, University Park, Pennsylvania 16802-5013 USA
Search for more papers by this authorDeborah Huntzinger
School of Earth Science and Environmental Sustainability, Northern Arizona University, P.O. Box 5694, Flagstaff, Arizona 86011-5694 USA
Search for more papers by this authorRonald P. Neilson
Department of Botany and Plant Pathology, Oregon State University, 2082 Cordley Hall, Corvallis, Oregon 97331-2902 USA
Search for more papers by this authorBenjamin Poulter
Laboratoire des Sciences du Climat et l'Environnement, LSCE CEA CNRS UVSQ, 91191 Gif Sur Yvette, France
Search for more papers by this authorAndrew D. Richardson
Department of Organismic and Evolutionary Biology, Harvard University, 22 Divinity Avenue, Cambridge, Massachusetts 02138 USA
Search for more papers by this authorJingfeng Xiao
Earth Systems Research Center, Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, 8 College Road, Durham, New Hampshire 03824-3525 USA
Search for more papers by this authorIan Baker
Atmospheric Science Department, Colorado State University, 200 West Lake Street, Fort Collins, Colorado 80523 USA
Search for more papers by this authorPhilippe Ciais
Laboratoire des Sciences du Climat et l'Environnement, LSCE CEA CNRS UVSQ, 91191 Gif Sur Yvette, France
Search for more papers by this authorTrevor F. Keenan
Department of Organismic and Evolutionary Biology, Harvard University, 22 Divinity Avenue, Cambridge, Massachusetts 02138 USA
Search for more papers by this authorBeverly Law
Department of Forest Ecosystems and Society, Oregon State University, 321 Richardson Hall, Corvallis, Oregon 97331 USA
Search for more papers by this authorWilfred M. Post
Earth Science Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831-6301 USA
Search for more papers by this authorDaniel Ricciuto
Environmental Sciences Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831-6301 USA
Search for more papers by this authorKevin Schaefer
National Snow and Ice Data Center, Cooperative Institute for Research in Environmental Sciences, 449 UCB, University of Colorado, Boulder, Colorado 80309-0449 USA
Search for more papers by this authorHanqin Tian
International Center for Climate and Global Change Research, School of Forestry and Wildlife Sciences, SFWS Building, 602 Duncan Drive, Auburn University, Auburn, Alabama 36849-5418 USA
Search for more papers by this authorEnrico Tomelleri
Max Planck Institute for Biogeochemistry, Hans-Knöll-Straße 10, 07745 Jena, Germany
Search for more papers by this authorHans Verbeeck
Laboratory of Plant Ecology, Department of Applied Ecology and Environmental Biology, Ghent University, Coupure links 653, 9000 Ghent, Belgium
Search for more papers by this authorNicolas Viovy
Laboratoire des Sciences du Climat et l'Environnement, LSCE CEA CNRS UVSQ, 91191 Gif Sur Yvette, France
Search for more papers by this authorCorresponding Author
Brett M. Raczka
Department of Meteorology, Pennsylvania State University, 503 Walker Building, University Park, Pennsylvania 16802-5013 USA
E-mail: [email protected]Search for more papers by this authorKenneth J. Davis
Department of Meteorology, Pennsylvania State University, 503 Walker Building, University Park, Pennsylvania 16802-5013 USA
Search for more papers by this authorDeborah Huntzinger
School of Earth Science and Environmental Sustainability, Northern Arizona University, P.O. Box 5694, Flagstaff, Arizona 86011-5694 USA
Search for more papers by this authorRonald P. Neilson
Department of Botany and Plant Pathology, Oregon State University, 2082 Cordley Hall, Corvallis, Oregon 97331-2902 USA
Search for more papers by this authorBenjamin Poulter
Laboratoire des Sciences du Climat et l'Environnement, LSCE CEA CNRS UVSQ, 91191 Gif Sur Yvette, France
Search for more papers by this authorAndrew D. Richardson
Department of Organismic and Evolutionary Biology, Harvard University, 22 Divinity Avenue, Cambridge, Massachusetts 02138 USA
Search for more papers by this authorJingfeng Xiao
Earth Systems Research Center, Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, 8 College Road, Durham, New Hampshire 03824-3525 USA
Search for more papers by this authorIan Baker
Atmospheric Science Department, Colorado State University, 200 West Lake Street, Fort Collins, Colorado 80523 USA
Search for more papers by this authorPhilippe Ciais
Laboratoire des Sciences du Climat et l'Environnement, LSCE CEA CNRS UVSQ, 91191 Gif Sur Yvette, France
Search for more papers by this authorTrevor F. Keenan
Department of Organismic and Evolutionary Biology, Harvard University, 22 Divinity Avenue, Cambridge, Massachusetts 02138 USA
Search for more papers by this authorBeverly Law
Department of Forest Ecosystems and Society, Oregon State University, 321 Richardson Hall, Corvallis, Oregon 97331 USA
Search for more papers by this authorWilfred M. Post
Earth Science Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831-6301 USA
Search for more papers by this authorDaniel Ricciuto
Environmental Sciences Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831-6301 USA
Search for more papers by this authorKevin Schaefer
National Snow and Ice Data Center, Cooperative Institute for Research in Environmental Sciences, 449 UCB, University of Colorado, Boulder, Colorado 80309-0449 USA
Search for more papers by this authorHanqin Tian
International Center for Climate and Global Change Research, School of Forestry and Wildlife Sciences, SFWS Building, 602 Duncan Drive, Auburn University, Auburn, Alabama 36849-5418 USA
Search for more papers by this authorEnrico Tomelleri
Max Planck Institute for Biogeochemistry, Hans-Knöll-Straße 10, 07745 Jena, Germany
Search for more papers by this authorHans Verbeeck
Laboratory of Plant Ecology, Department of Applied Ecology and Environmental Biology, Ghent University, Coupure links 653, 9000 Ghent, Belgium
Search for more papers by this authorNicolas Viovy
Laboratoire des Sciences du Climat et l'Environnement, LSCE CEA CNRS UVSQ, 91191 Gif Sur Yvette, France
Search for more papers by this authorCorresponding Editor (ad hoc): C. A. Williams.
Abstract
Terrestrial biosphere models can help identify physical processes that control carbon dynamics, including land–atmosphere CO2 fluxes, and have great potential to predict the terrestrial ecosystem response to changing climate. The skill of models that provide continental-scale carbon flux estimates, however, remains largely untested. This paper evaluates the performance of continental-scale flux estimates from 17 models against observations from 36 North American flux towers. Fluxes extracted from regional model simulations were compared with co-located flux tower observations at monthly and annual time increments. Site-level model simulations were used to help interpret sources of the mismatch between the regional simulations and site-based observations. On average, the regional model runs overestimated the annual gross primary productivity (5%) and total respiration (15%), and they significantly underestimated the annual net carbon uptake (64%) during the time period 2000–2005. Comparison with site-level simulations implicated choices specific to regional model simulations as contributors to the gross flux biases, but not the net carbon uptake bias. The models performed the best at simulating carbon exchange at deciduous broadleaf sites, likely because a number of models used prescribed phenology to simulate seasonal fluxes. The models did not perform as well for crop, grass, and evergreen sites. The regional models matched the observations most closely in terms of seasonal correlation and seasonal magnitude of variation, but they have very little skill at interannual correlation and minimal skill at interannual magnitude of variability. The comparison of site vs. regional-level model runs demonstrated that (1) the interannual correlation is higher for site-level model runs, but the skill remains low; and (2) the underestimation of year-to-year variability for all fluxes is an inherent weakness of the models. The best-performing regional models that did not use flux tower calibration were CLM-CN, CASA-GFEDv2, and SIB3.1. Two flux tower calibrated, empirical models, EC-MOD and MOD17+, performed as well as the best process-based models. This suggests that (1) empirical, calibrated models can perform as well as complex, process-based models and (2) combining process-based model structure with relevant constraining data could significantly improve model performance.
Supporting Information
Filename | Description |
---|---|
https://dx.doi.org/10.6084/m9.figshare.c.3309804 | Research data pertaining to this article is located at figshare.com: |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
Literature Cited
-
Allison, V. J.,
R. M. Miller,
J. D. Jastrow,
R. Matamalaand
D. R. Zak.
.
2005.
Changes in soil microbial community structure in a tallgrass prairie chronosequence.
Soil Science Society of America Journal
69:
1412–1421.
-
Bachelet, D.,
J. M. Lenihan,
C. Daly,and
R. P. Neilson.
2000.
Interactions between fire, grazing and climate change at Wind Cave National Park, SD.
Ecological Modelling
134:
229–244.
-
Baker, D. F.,
et al
.
2006.
TransCom 3 inversion intercomparison: Impact of transport model errors on the interannual variability of regional CO2 fluxes, 1988–2003.
Global Biogeochemical Cycles
20:
GB1002.
-
Baker, I. T.,
L. Prihodko,
A. S. Denning,
M. Goulden,
S. Miller,and
H. R. da Rocha.
2008.
Seasonal drought stress in the Amazon: Reconciling models and observations.
Journal of Geophysical Research Biogeosciences
113:
G00B01.
-
Baldocchi, D.,
et al
.
2001.
FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities.
Bulletin of the American Meteorological Society
82:
2415–2434.
-
Barr, A. G.,
T. J. Griffis,
T. A. Black,
X. Lee,
R. M. Staebler,
J. D. Fuentes,
Z. Chen,and
K. Morgenstern.
2002.
Comparing the carbon budgets of boreal and temperate deciduous forest stands.
Canadian Journal of Forest Research
32:
813–822.
-
Barr, A.,
D. Hollinger,and
A. D. Richardson.
2009.
CO2 flux measurement uncertainty estimates for NACP.
EOS Transactions, American Geophysical Union (Fall Meeting Supplement)
90
(52):
B54A-;04.
-
Beer, C.,
et al
.
2010.
Terrestrial gross carbon dioxide uptake: Global distribution and covariation with climate.
Science
329:
834–838.
-
Bergeron, O.,
H. A. Margolis,
T. A. Black,
C. Coursolle,
A. L. Dunn,
A. G. Barr,and
S. C. Wofsy.
2007.
Comparison of carbon dioxide fluxes over three boreal black spruce forests in Canada.
Global Change Biology
13:
89–107.
-
Bondeau, A.,
P. C. Smith,
S. Zaehle,
S. Schaphoff,
W. Lucht,
W. Cramer,and
D. Gerten.
2007.
Modelling the role of agriculture for the 20th century global terrestrial carbon balance.
Global Change Biology
13:
679–706.
-
Bradford, J. B.,
R. A. Birdsey,
L. A. Joyce,and
M. G. Ryan.
2008.
Tree age, disturbance history, and carbon stocks and fluxes in subalpine Rocky Mountain forests.
Global Change Biology
14:
2882–2897.
-
Braswell, B. H.,
W. J. Sacks,
E. Linder,and
D. S. Schimel.
2005.
Estimating diurnal to annual ecosystem parameters by synthesis of a carbon flux model with eddy covariance net ecosystem exchange observations.
Global Change Biology
11:
335–355.
-
Burba, G. G.,and
S. B. Verma.
2005.
Seasonal and interannual variability in evapotranspiration of native tallgrass prairie and cultivated wheat ecosystems.
Agricultural and Forest Meteorology
135:
190–201.
-
Carvalhais, N.,
M. Reichstein,
G. J. Collatz,
M. D. Mahecha,
M. Migliavacca,
C. S. R. Neigh,
E. Tomelleri,
A. A. Benali,
D. Papale,and
J. Seixas.
2010.
Deciphering the components of regional net ecosystem fluxes following a bottom-up approach for the Iberian Peninsula.
Biogeosciences
7:
3707–3729.
-
Chen, J. M.,
J. Liu,
J. Cihlar,and
M. L. Goulden.
1999.
Daily canopy photosynthesis model through temporal and spatial scaling for remote sensing applications.
Ecological Modelling
124:
99–119.
-
Ciais, P.,
et al
.
2005.
Europe-wide reduction in primary productivity caused by the heat and drought in 2003.
Nature
437:
529–533.
-
Cook, B. D.,
P. V. Bolstad,
J. G. Martin,
F. A. Heinsch,
K. J. Davis,
W. G. Wang,
A. R. Desai,and
R. M. Teclaw.
2008.
Using light-use and production efficiency models to predict photosynthesis and net carbon exchange during forest canopy disturbance.
Ecosystems
11:
26–44.
-
Cook, B. D.,
et al
.
2004.
Carbon exchange and venting anomalies in an upland deciduous forest in northern Wisconsin, USA.
Agricultural and Forest Meteorology
126:
271–295.
-
Cramer, W.,
D. W. Kicklighter,
A. Bondeau,
B. Moore,
G. Churkina,
B. Nemry,
A. Ruimy,
A. L. Schloss,
and the Participants of the Potsdam NPP Model Intercomparison.
1999.
Comparing global models of terrestrial net primary productivity (NPP): overview and key results.
Global Change Biology
5:
1–15.
-
Davis, K. J.,
P. S. Bakwin,
C. X. Yi,
N. W. Berger,
C. L. Zhao,
R. M. Teclaw,and
J. G. Isebrands.
2003.
The annual cycles of CO2 and H2O exchange over a northern mixed forest as observed from a very tall tower.
Global Change Biology
9:
1278–1293.
-
Desai, A. R.,
P. V. Bolstad,
B. D. Cook,
K. J. Davis,and
E. V. Carey.
2005.
Comparing net ecosystem exchange of carbon dioxide between an old-growth and mature forest in the upper Midwest, USA.
Agricultural and Forest Meteorology
128:
33–55.
-
Desai, A. R.,
et al
.
2008.
Influence of vegetation and surface forcing on carbon dioxide fluxes across the Upper Midwest, USA: Implications for regional scaling.
Agricultural and Forest Meteorology
148:
288–308.
-
Dietze, M. C.,
et al
.
2011.
Characterizing the performance of ecosystem models across time scales: A spectral analysis of the North American Carbon Program site-level synthesis.
Journal of Geophysical Research Biogeosciences
116:
G04029.
-
Fischer, M. L.,
D. P. Billesbach,
W. J. Riley,
J. A. Berry,and
M. S. Torn.
2007.
Spatiotemporal variations in growing season exchanges of CO2, H2O, and sensible heat in agricultural fields of the southern Great Plains.
Earth Interactions
11:
1–21.
-
Flanagan, L. B.,and
A. C. Adkinson.
2011.
Interacting controls on productivity in a northern Great Plains grassland and implications for response to ENSO events.
Global Change Biology
17:
3293–3311.
-
Flanagan, L. B.,and
K. H. Syed.
2011.
Stimulation of both photosynthesis and respiration in response to warmer and drier conditions in a boreal peatland ecosystem.
Global Change Biology
17:
2271–2287.
-
Foley, J. A.,
I. C. Prentice,
N. Ramankutty,
S. Levis,
D. Pollard,
S. Sitch,and
A. Haxeltine.
1996.
An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics.
Global Biogeochemical Cycles
10:
603–628.
-
Friedlingstein, P.,
et al
.
2006.
Climate-carbon cycle feedback analysis: Results from the (CMIP)-M-4 model intercomparison.
Journal of Climate
19:
3337–3353.
-
Friend, A. D.,
et al
.
2007.
FLUXNET and modelling the global carbon cycle.
Global Change Biology
13:
610–633.
-
Garrigues, S.,
et al
.
2008.
Validation and intercomparison of global leaf area index products derived from remote sensing data.
Journal of Geophysical Research Biogeosciences
113:
G02028.
-
Gough, C. M.,
C. S. Vogel,
H. P. Schmid,
H. B. Su,and
P. S. Curtis.
2008.
Multi-year convergence of biometric and meteorological estimates of forest carbon storage.
Agricultural and Forest Meteorology
148:
158–170.
-
Goulden, M. L.,
B. C. Daube,
S. M. Fan,
D. J. Sutton,
A. Bazzaz,
J. W. Munger,and
S. C. Wofsy.
1997.
Physiological responses of a black spruce forest to weather.
Journal of Geophysical Research Atmospheres
102:
28987–28996.
-
Gu, L.,
T. Meyers,
S. G. Pallardy,
P. J. Hanson,
B. Yang,
M. Heuer,
K. P. Hosman,
J. S. Riggs,
D. Sluss,and
S. D. Wullschleger.
2006.
Direct and indirect effects of atmospheric conditions and soil moisture on surface energy partitioning revealed by a prolonged drought at a temperate forest site.
Journal of Geophysical Research Atmospheres
111:
D16102.
-
Hansen, J.,
R. Ruedy,
J. Glascoe,and
M. Sato.
1999.
GISS analysis of surface temperature change.
Journal of Geophysical Research Atmospheres
104:
30997–31022.
-
Hanson, P. J.,
et al
.
2004.
Oak forest carbon and water simulations: model intercomparisons and evaluations against independent data.
Ecological Monographs
74:
443–489.
-
Harazono, Y.,
M. Mano,
A. Miyata,
R. C. Zulueta,and
W. C. Oechel.
2003.
Inter-annual carbon dioxide uptake of a wet sedge tundra ecosystem in the Arctic.
Tellus Series B Chemical and Physical Meteorology
55:
215–231.
-
Hayes, D. J.,
A. D. McGuire,
D. W. Kicklighter,
K. R. Gurney,
T. J. Burnside,and
J. M. Melillo.
2011.
Is the northern high latitude land-based CO2 sink weakening?
Global Biogeochemical Cycles
25:
GB3018.
-
Hayes, D. J.,
et al
.
2012.
Reconciling estimates of the contemporary North American carbon balance among terrestrial biosphere models, atmospheric inversions, and a new approach for estimating net ecosystem exchange from inventory-based data.
Global Change Biology
18:
1282–1299.
-
Hoffman, F. M.,
et al
.
2007.
Results from the Carbon-Land Model Intercomparison Project (C-LAMP) and Availability of the Data on the Earth System Grid (ESG).
Journal of Physics Conference Series
78:
012026.
-
Huntzinger, D. N.,
et al
.
2012.
North American Carbon Project (NACP) regional interim synthesis: terrestrial biospheric model intercomparison.
Ecological Modelling
232:
144–157.
-
Ito, A.,and
T. Sasai.
2006.
A comparison of simulation results from two terrestrial carbon cycle models using three climate data sets.
Tellus Series B Chemical and Physical Meteorology
58:
513–522.
-
Jain, A. K.,and
X. J. Yang.
2005.
Modeling the effects of two different land cover change data sets on the carbon stocks of plants and soils in concert with CO2 and climate change.
Global Biogeochemical Cycles
19:
GB2015.
-
Ju, W. M.,
J. M. Chen,
T. A. Black,
A. G. Barr,
J. Liu,and
B. Z. Chen.
2006.
Modelling multi-year coupled carbon and water fluxes in a boreal aspen forest.
Agricultural and Forest Meteorology
140:
136–151.
-
Jung, M.,
et al
.
2011.
Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations.
Journal of Geophysical Research Biogeosciences
116:
G00J07.
-
Keenan, T. F.,
et al
.
2012.
Terrestrial biosphere model performance for inter-annual variability of land-atmosphere CO2 exchange.
Global Change Biology
18:
1971–1987.
-
Kljun, N.,
T. A. Black,
T. J. Griffis,
A. G. Barr,
D. Gaumont-Guay,
K. Morgenstern,
J. H. McCaughey,and
Z. Nesic.
2006.
Response of net ecosystem productivity of three boreal forest stands to drought.
Ecosystems
9:
1128–1144.
-
Krinner, G.,
N. Viovy,
N. de Noblet-Ducoudre,
J. Ogee,
J. Polcher,
P. Friedlingstein,
P. Ciais,
S. Sitch,and
I. C. Prentice.
2005.
A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system.
Global Biogeochemical Cycles
19:
GB1015.
-
Kucharik, C. J.,
J. A. Foley,
C. Delire,
V. A. Fisher,
M. T. Coe,
J. D. Lenters,
C. Young-Molling,
N. Ramankutty,
J. M. Norman,and
S. T. Gower.
2000.
Testing the performance of a Dynamic Global Ecosystem Model: Water balance, carbon balance, and vegetation structure.
Global Biogeochemical Cycles
14:
795–825.
-
Lafleur, P. M.,
N. T. Roulet,
J. L. Bubier,
S. Frolking,and
T. R. Moore.
2003.
Interannual variability in the peatland-atmosphere carbon dioxide exchange at an ombrotrophic bog.
Global Biogeochemical Cycles
17:
1036.
-
Law, B. E.,
D. Turner,
J. Campbell,
O. J. Sun,
S. Van Tuyl,
W. D. Ritts,and
W. B. Cohen.
2004.
Disturbance and climate effects on carbon stocks and fluxes across western Oregon USA.
Global Change Biology
10:
1429–1444.
-
Leemans, R.,and
W. Cramer.
1991.
The IIASA database for mean monthly values of temperature, precipitation and cloudiness of a global terrestrial grid. Report RR-91-18.
International Institute for Applied Systems Analysis (IIASA),
Laxenburg, Austria.
-
Lokupitiya, E.,
S. Denning,
K. Paustian,
I. Baker,
K. Schaefer,
S. Verma,
T. Meyers,
C. J. Bernacchi,
A. Suyker,and
M. Fischer.
2009.
Incorporation of crop phenology in Simple Biosphere Model (SiBcrop) to improve land-atmosphere carbon exchanges from croplands.
Biogeosciences
6:
969–986.
-
Luo, H.,
W. C. Oechel,
S. J. Hastings,
R. Zulueta,
Y. Qian,and
H. Kwon.
2007.
Mature semiarid chaparral ecosystems can be a significant sink for atmospheric carbon dioxide.
Global Change Biology
13:
386–396.
-
Ma, S. Y.,
D. D. Baldocchi,
L. K. Xu,and
T. Hehn.
2007.
Inter-annual variability in carbon dioxide exchange of an oak/grass savanna and open grassland in California.
Agricultural and Forest Meteorology
147:
157–171.
-
Matamala, R.,
J. D. Jastrow,
R. M. Miller,and
C. T. Garten.
2008.
Temporal changes in C and N stocks of restored prairie: implications for C sequestration strategies.
Ecological Applications
18:
1470–1488.
-
McCaughey, J. H.,
M. R. Pejam,
M. A. Arain,and
D. A. Cameron.
2006.
Carbon dioxide and energy fluxes from a boreal mixedwood forest ecosystem in Ontario, Canada.
Agricultural and Forest Meteorology
140:
79–96.
-
Medvigy, D.,
S. C. Wofsy,
J. W. Munger,and
P. R. Moorcroft.
2010.
Responses of terrestrial ecosystems and carbon budgets to current and future environmental variability.
Proceedings of the National Academy of Sciences USA
107:
8275–8280.
-
Mitchell, T. D.,and
P. D. Jones.
2005.
An improved method of constructing a database of monthly climate observations and associated high-resolution grids.
International Journal of Climatology
25:
693–712.
-
Moffat, A. M.,
et al
.
2007.
Comprehensive comparison of gap-filling techniques for eddy covariance net carbon fluxes.
Agricultural and Forest Meteorology
147:
209–232.
-
New, M.,
M. Hulme,and
P. Jones.
2000.
Representing twentieth-century space-time climate variability. Part II: Development of 1901–96 monthly grids of terrestrial surface climate.
Journal of Climate
13:
2217–2238.
-
Oberbauer, S. F.,
et al
.
2007.
Tundra CO2 fluxes in response to experimental warming across latitudinal and moisture gradients.
Ecological Monographs
77:
221–238.
-
Pacala, S.,
et al
.
2007.
The North American carbon budget past and present.
Chapter 3 in
A. W King
L Dilling
G. P Zimmerman
D. M Fairman
R. A Houghton
G Marland
A. Z Rose
T. J Wilbanks
editors.
The first State of the Carbon Cycle Report (SOCCR): The North American carbon budget and implications for the global carbon cycle. A report by the U.S. Climate Change Science Program and the Subcommittee on Global Change Research, Washington, D.C., USA.
-
Pataki, D. E.,and
R. Oren.
2003.
Species differences in stomatal control of water loss at the canopy scale in a mature bottomland deciduous forest.
Advances in Water Resources
26:
1267–1278.
-
Peichl, M.,and
M. A. Arain.
2007.
Allometry and partitioning of above- and belowground tree biomass in an age-sequence of white pine forests.
Forest Ecology and Management
253:
68–80.
-
Peters, W.,
et al
.
2007.
An atmospheric perspective on North American carbon dioxide exchange: CarbonTracker.
Proceedings of the National Academy of Sciences USA
104:
18925–18930.
-
Potter, C.,
S. Klooster,
A. Huete,and
V. Genovese.
2007.
Terrestrial carbon sinks for the United States predicted from MODIS satellite data and ecosystem modeling.
Earth Interactions
11:
013.
-
Poulter, B. D.,
C. Frank,
E. L. Hodson,and
N. E. Zimmermann.
2011.
Impacts of land cover and climate data selection on understanding terrestiral carbon dynamics and the CO2 airborne fraction.
Biogeosciences Discussion
8:
1617–1642.
-
Randall, D. A.,
et al
.
2007.
Climate models and their evaluation.
Pages
589–662
in
S Solomon
D Qin
M Manning
Z Chen
M Marquis
K. B Averyt
M Tignorand
H. L Miller
editors.
Climate Change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change.
Cambridge University Press,
Cambridge, UK.
-
Randerson, J. T.,
et al
.
2009.
Systematic assessment of terrestrial biogeochemistry in coupled climate-carbon models.
Global Change Biology
15:
2462–2484.
-
Randerson, J. T.,
M. V. Thompson,
T. J. Conway,
I. Y. Fung,and
C. B. Field.
1997.
The contribution of terrestrial sources and sinks to trends in the seasonal cycle of atmospheric carbon dioxide.
Global Biogeochemical Cycles
11:
535–560.
-
Rayner, P. J.,
et al
.
2008.
Interannual variability of the global carbon cycle (1992–2005) inferred by inversion of atmospheric CO2 and delta(CO2)-C-13 measurements.
Global Biogeochemical Cycles
22(
3):
GB3008.
-
Ricciuto, D. M.,
M. P. Butler,
K. J. Davis,
B. D. Cook,
P. S. Bakwin,
A. E. Andrews,and
R. M. Teclaw.
2008.
Causes of interannual variability in ecosystem-atmosphere CO2 exchange.
Agricultural and Forest Meteorology
148:
309–327.
-
Ricciuto, D. M.,
P. E. Thornton,
K. Schaefer,
R. B. Cook,and
K. J. Davis.
2009.
How uncertainty in gap-filled meteorological input forcing at eddy covariance sites impacts modeled carbon and energy flux.
EOS Transactions, American Geophysical Union (Fall Meeting Supplement)
90
(52):
B54A–03.
-
Richardson, A. D.,
et al
.
2012.
Terrestrial biosphere models need better representation of vegetation phenology: results from the North American Carbon Program Site Synthesis.
Global Change Biology
18:
566–584.
-
Richardson, A. D.,and
D. Y. Hollinger.
2007.
A method to estimate the additional uncertainty in gap-filled NEE resulting from long gaps in the CO2 flux record.
Agricultural and Forest Meteorology
147:
199–208.
-
Richardson, A. D.,
et al
.
2006.
A multi-site analysis of random error in tower-based measurementsof carbon and energy fluxes.
Agricultural and Forest Meteorology
136:
1–18.
-
Richardson, A. D.,
D. Y. Hollinger,
D. B. Dail,
J. T. Lee,
W. Munger,and
J. O'Keefe.
2009.
Influence of spring phenology on seasonal and annual carbon balance in two contrasting New England forests.
Tree Physiology
29:
321–331.
-
Rogers, B. M.,
R. P. Neilson,
R. Draypek,
J. M. Lenihan,
J. R. Wells,
D. Bachelet,and
B. E. Law.
2011.
Impacts of climate change on fire regimes and carbon stocks of the U.S. Pacific Northwest.
Journal of Geophysical Research
116:
G03037.
-
Ruimy, A.,
L. Kergoat,
A. Bondeau,
and the Participants of the Potsdam NPP Model Intercomparison.
1999.
Comparing global models of terrestrial net primary productivity (NPP): analysis of differences in light absorption and light-use efficiency.
Global Change Biology
5:
56–64.
-
Ryu, Y.,
D. D. Baldocchi,
S. Ma,and
T. Hehn.
2008.
Interannual variability of evapotranspiration and energy exchange over an annual grassland in California.
Journal of Geophysical Research Atmospheres
113:
D09104.
-
Schaefer, K.,
et al
.
2012.
A model-data comparison of gross primary productivity: Results from the North American Carbon Program site synthesis.
Journal of Geophysical Research Biogeosciences
117:
G03010.
-
Schmid, H. P.,
C. S. B. Grimmond,
F. Cropley,
B. Offerle,and
H. B. Su.
2000.
Measurements of CO2 and energy fluxes over a mixed hardwood forest in the mid-western United States.
Agricultural and Forest Meteorology
103:
357–374.
-
Schwalm, C. R.,
T. A. Black,
K. Morgenstern,and
E. R. Humphreys.
2007.
A method for deriving net primary productivity and component respiratory fluxes from tower-based eddy covariance data: a case study using a 17-year data record from a Douglas-fir chronosequence.
Global Change Biology
13:
370–385.
-
Schwalm, C. R.,
et al
.
2010.
A model-data intercomparison of CO2 exchange across North America: Results from the North American Carbon Program site synthesis.
Journal of Geophysical Research Biogeosciences
115:
G00H05.
-
Siqueira, M. B.,
G. G. Katul,
D. A. Sampson,
P. C. Stoy,
J. Y. Juang,
H. R. McCarthy,and
R. Oren.
2006.
Multiscale model intercomparisons of CO2 and H2O exchange rates in a maturing southeastern US pine forest.
Global Change Biology
12:
1189–1207.
-
Stoy, P. C.,
G. G. Katul,
M. B. S. Siqueira,
J.-Y. Juang,
K. A. Novick,
H. R. McCarthy,
A. C. Oishi,and
R. Oren.
2008.
Role of vegetation in determining carbon sequestration along ecological succession in the southeastern United States.
Global Change Biology
14:
1409–1427.
-
Stoy, P. C.,
et al
.
2009.
Biosphere-atmosphere exchange of CO2 in relation to climate: a cross-biome analysis across multiple time scales.
Biogeosciences
6:
2297–2312.
-
Strand, M.,and
G. Oquist.
1985.
Inhibition of photosynthesis by freezing temperatures and high light levels in cold-acclimated seedlings of Scots pine (Pinus sylvestris). I. Effects on the light-limited and light-saturated rates of CO2 assimilation.
Physiologia Plantarum
64:
425–430.
-
Sulman, B. N.,
A. R. Desai,
B. D. Cook,
N. Saliendra,and
D. S. Mackay.
2009.
Contrasting carbon dioxide fluxes between a drying shrub wetland in Northern Wisconsin, USA, and nearby forests.
Biogeosciences
6:
1115–1126.
-
Suyker, A. E.,and
S. B. Verma.
2008.
Interannual water vapor and energy exchange in an irrigated maize-based agroecosystem.
Agricultural and Forest Meteorology
148:
417–427.
-
Taylor, J. R.
1997.
An introduction to error analysis. Second edition.
University Science Books,
Herndon, Virginia, USA.
-
Taylor, K. E.
2001.
Summarizing multiple aspects of model performance in a single diagram.
Journal of Geophysical Research Atmospheres
106:
7183–7192.
-
Thomas, C. K.,
B. E. Law,
J. Irvine,
J. G. Martin,
J. C. Pettijohn,and
K. J. Davis.
2009.
Seasonal hydrology explains interannual and seasonal variation in carbon and water exchange in a semiarid mature ponderosa pine forest in central Oregon.
Journal of Geophysical Research Biogeosciences
114:
G04006.
-
Thornton, P.,
et al
.
2002.
Modeling and measuring the effects of disturbance history and climate on carbon and water budgets in evergreen needleleaf forests.
Agricultural and Forest Meteorology
113:
185–222.
-
Thornton, P. E.,
S. C. Doney,
K. Lindsay,
J. K. Moore,
N. Mahowald,
J. T. Randerson,
I. Fung,
J. F. Lamarque,
J. J. Feddema,and
Y. H. Lee.
2009.
Carbon-nitrogen interactions regulate climate-carbon cycle feedbacks: results from an atmosphere-ocean general circulation model.
Biogeosciences
6:
2099–2120.
-
Tian, H. Q.,
X. Xu,
M. Liu,
W. Ren,
C. Zhang,
G. Chen,and
C. Lu.
2010.
Spatial and temporal patterns of CH4 and N2O fluxes in terrestrial ecosystems of North America during 1979–2008: application of a global biogeochemistry model.
Biogeosciences
7:
2673–2694.
-
Urbanski, S.,
C. Barford,
S. Wofsy,
C. Kucharik,
E. Pyle,
J. Budney,
K. McKain,
D. Fitzjarrald,
M. Czikowsky,and
J. W. Munger.
2007.
Factors controlling CO2 exchange on timescales from hourly to decadal at Harvard Forest.
Journal of Geophysical Research Biogeosciences
112:
G02020.
-
van der Werf, G. R.,
J. T. Randerson,
G. J. Collatz,
L. Giglio,
P. S. Kasibhatla,
A. F. Arellano,
S. C. Olsen,and
E. S. Kasischke.
2004.
Continental-scale partitioning of fire emissions during the 1997 to 2001 El Nino/La Nina period.
Science
303:
73–76.
-
van der Werf, G. R.,
J. T. Randerson,
L. Giglio,
G. J. Collatz,
P. S. Kasibhatla,and
A. F. Arellano.
2006.
Interannual variability in global biomass burning emissions from 1997 to 2004.
Atmospheric Chemistry and Physics
6:
3423–3441.
-
Viovy, N.,
C. Francois,
A. Bondeau,
G. Krinner,
J. Polcher,
L. Kergoat,
G. Dedieu,
N. De noblet,
P. Ciais,and
P. Friedlingstein.
2000.
Assimilation of remote sensing measurements into the ORCHIDEE/STOMATE DGVM biosphere model.
Pages
713–716
in
Proceedings of the 8th International Symposium on Physical Measurements and Signatures in Remote Sensing. 8–12 January 2001, Aussois, France.
-
Waring, R. H.,and
S. W. Running.
2007.
Forest ecosystems: analysis at multiple scales. Third edition.
Elsevier Academic,
Burlington, Massachusetts, USA.
-
Xiao, J.,
et al
.
2008.
Estimation of net ecosystem carbon exchange for the conterminous United States by combining MODIS and AmeriFlux data.
Agricultural and Forest Meteorology
148:
1827–1847.
-
Xiao, J.,
et al
.
2010.
A continuous measure of gross primary production for the conterminous U.S. derived from MODIS and AmeriFlux data.
Remote Sensing of Environment
114:
576–591.
-
Yang, X. J.,
V. Wittig,
A. K. Jain,and
W. Post.
2009.
Integration of nitrogen cycle dynamics into the Integrated Science Assessment Model for the study of terrestrial ecosystem responses to global change.
Global Biogeochemical Cycles
23:
GB4029.
-
Zeng, N.,
A. Mariotti,and
P. Wetzel.
2005.
Terrestrial mechanisms of interannual CO2 variability.
Global Biogeochemical Cycles
19:
GB1016.
-
Zeng, N.,
H. F. Qian,
E. Munoz,and
R. Iacono.
2004.
How strong is carbon cycle-climate feedback under global warming?
Geophysical Research Letters
31:
L20203.
-
Zhao, Y.,
P. Ciais,
P. Peylin,
N. Viovy,
B. Longdoz,and
J. M. Bonnefond,
et al
.
2011.
How errors on meteorological variables impact simulated ecosystem fluxes: a case study for six French sites.
Biogeosciences Discussion
8:
5467–2522.