Journal list menu
Assessing nutrient limitation in complex forested ecosystems: alternatives to large-scale fertilization experiments
Corresponding Author
Benjamin W. Sullivan
Department of Ecosystem and Conservation Sciences, University of Montana, 32 Campus Drive, Missoula, Montana 59812 USA
E-mail: [email protected]Search for more papers by this authorSilvia Alvarez-Clare
Department of Ecosystem and Conservation Sciences, University of Montana, 32 Campus Drive, Missoula, Montana 59812 USA
Search for more papers by this authorSarah C. Castle
Department of Ecosystem and Conservation Sciences, University of Montana, 32 Campus Drive, Missoula, Montana 59812 USA
Search for more papers by this authorStephen Porder
Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island 02912 USA
Search for more papers by this authorCorresponding Author
Sasha C. Reed
Department of Ecology and Evolutionary Biology, Environmental Studies Program, and Institute of Arctic and Alpine Research, University of Colorado, Boulder, Colorado 80309 USA
E-mail: [email protected]Search for more papers by this authorLaura Schreeg
Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island 02912 USA
Search for more papers by this authorAlan R. Townsend
Department of Ecology and Evolutionary Biology, Environmental Studies Program, and Institute of Arctic and Alpine Research, University of Colorado, Boulder, Colorado 80309 USA
Search for more papers by this authorCory C. Cleveland
Department of Ecosystem and Conservation Sciences, University of Montana, 32 Campus Drive, Missoula, Montana 59812 USA
Search for more papers by this authorCorresponding Author
Benjamin W. Sullivan
Department of Ecosystem and Conservation Sciences, University of Montana, 32 Campus Drive, Missoula, Montana 59812 USA
E-mail: [email protected]Search for more papers by this authorSilvia Alvarez-Clare
Department of Ecosystem and Conservation Sciences, University of Montana, 32 Campus Drive, Missoula, Montana 59812 USA
Search for more papers by this authorSarah C. Castle
Department of Ecosystem and Conservation Sciences, University of Montana, 32 Campus Drive, Missoula, Montana 59812 USA
Search for more papers by this authorStephen Porder
Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island 02912 USA
Search for more papers by this authorCorresponding Author
Sasha C. Reed
Department of Ecology and Evolutionary Biology, Environmental Studies Program, and Institute of Arctic and Alpine Research, University of Colorado, Boulder, Colorado 80309 USA
E-mail: [email protected]Search for more papers by this authorLaura Schreeg
Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island 02912 USA
Search for more papers by this authorAlan R. Townsend
Department of Ecology and Evolutionary Biology, Environmental Studies Program, and Institute of Arctic and Alpine Research, University of Colorado, Boulder, Colorado 80309 USA
Search for more papers by this authorCory C. Cleveland
Department of Ecosystem and Conservation Sciences, University of Montana, 32 Campus Drive, Missoula, Montana 59812 USA
Search for more papers by this authorPresent address: United States Geological Survey, Canyonlands Research Station, 2290 South West Resource Boulevard, Moab, Utah 84532 USA.
Corresponding Editor: J. B. Yavitt.
Abstract
Quantifying nutrient limitation of primary productivity is a fundamental task of terrestrial ecosystem ecology, but in a high carbon dioxide environment it is even more critical that we understand potential nutrient constraints on plant growth. Ecologists often manipulate nutrients with fertilizer to assess nutrient limitation, yet for a variety of reasons, nutrient fertilization experiments are either impractical or incapable of resolving ecosystem responses to some global changes. The challenges of conducting large, in situ fertilization experiments are magnified in forests, especially the high-diversity forests common throughout the lowland tropics. A number of methods, including fertilization experiments, could be seen as tools in a toolbox that ecologists may use to attempt to assess nutrient limitation, but there has been no compilation or synthetic discussion of those methods in the literature. Here, we group these methods into one of three categories (indicators of soil nutrient supply, organismal indicators of nutrient limitation, and lab-based experiments and nutrient depletions), and discuss some of the strengths and limitations of each. Next, using a case study, we compare nutrient limitation assessed using these methods to results obtained using large-scale fertilizations across the Hawaiian Archipelago. We then explore the application of these methods in high-diversity tropical forests. In the end, we suggest that, although no single method is likely to predict nutrient limitation in all ecosystems and at all scales, by simultaneously utilizing a number of the methods we describe, investigators may begin to understand nutrient limitation in complex and diverse ecosystems such as tropical forests. In combination, these methods represent our best hope for understanding nutrient constraints on the global carbon cycle, especially in tropical forest ecosystems.
Literature Cited
- Aerts, R. 1996. Nutrient resorption from senescing leaves of perennials: are there general patterns? Journal of Ecology 84: 597–608.
- Allison, V. J., L. M. Condron, D. A. Peltzer, S. J. Richardson,and B. L. Turner. 2007. Changes in enzyme activities and soil microbial community composition along carbon and nutrient gradients at the Franz Josef chronosequence, New Zealand. Soil Biology and Biochemistry 39: 1770–1781.
- Alvarez-Clare, S., M. C. Mack,and M. Brooks. 2013. A direct test of nitrogen and phosphorus limitation to net primary productivity in a lowland tropical wet forest. Ecology 94: 1540–1551.
- Amador, J. A.,and R. D. Jones. 1993. Nutrient limitations on microbial respiration in peat soils with different total P content. Soil Biology and Biochemistry 25: 793–801.
- Asner, G. P., D. E. Knapp, J. Boardman, R. O. Green, T. Kennedy-Bowdoin, M. Eastwood, R. E. Martin, C. Anderson,and C. B. Field. 2012. Carnegie Airborne Observatory-2: increasing science data dimensionality via high-fidelity multi-sensor fusion. Remote Sensing of Environment 124: 454–465.
- Asner, G. P.,and R. E. Martin. 2011. Canopy phylogenetic, chemical, and spectral assembly in a lowland Amazonian forest. New Phytologist 189: 999–1012.
- Baribault, T. W., R. K. Kobe,and A. O. Finley. 2012. Tropical tree growth is correlated with soil phosphorus, potassium, and calcium, though not for legumes. Ecological Monographs 82: 189–203.
- Barron, A. R., N. Wurzburger, J. P. Bellenger, S. J. Wright, A. M. L. Kraepiel,and L. O. Hedin. 2008. Molybdenum limitation of asymbiotic nitrogen fixation in tropical forest soils. Nature Geoscience 2: 42–45.
- Bloom, A. J., F. S. Chapin, III,and H. A. Mooney. 1985. Resource limitation in plants—an economic analogy. Annual Review of Ecology and Systematics 16: 363–392.
- Bradford, M. A., N. Fierer,and J. F. Reynolds. 2008. Soil carbon stocks in experimental mesocosms are dependent on the rate of labile carbon, nitrogen and phosphorus inputs to soils. Functional Ecology 22: 964–974.
- Brookshire, E. N. J., S. Gerber, D. N. L. Menge,and L. O. Hedin. 2012 a. Large losses of inorganic nitrogen from tropical rainforests suggest a lack of nitrogen limitation. Ecology Letters 15: 9–16.
- Brookshire, E. N. J., L. O. Hedin, J. D. Newbold, D. M. Sigman,and J. K. Jackson. 2012 b. Sustained losses of bioavailable nitrogen from montane tropical forests. Nature Geoscience. http://dx.doi.org/10.1038/NGEO1372
- Burton, A. J., K. S. Pregitzer, J. N. Crawford, G. P. Zogg,and D. R. Zak. 2004. Chronic NO3 additions reduce soil respiration in northern hardwood forests. Global Change Biology 10: 1080–1091.
- Chadwick, O. A., L. A. Derry, P. M. Vitousek, B. J. Huebert,and L. O. Hedin. 1999. Changing sources of nutrients during four million years of ecosystem development. Nature 397: 491–497.
- Chapin, F. S., III. 1980. The mineral nutrition of wild plants. Annual Review of Ecology and Systematics 11: 233–260.
- Chapin, F. S., III, A. J. Bloom, C. B. Field,and R. H. Waring. 1987. Plant responses to multiple environmental factors. BioScience 37: 49–57.
- Chapin, F. S., III, P. M. Vitousek,and K. Van Cleve. 1986. The nature of nutrient limitation in plant communities. American Naturalist 127: 48–58.
- Cleveland, C. C.,and D. Liptzin. 2007. C:N:P stoichiometry in soil: is there a “Redfield ratio” for the microbial biomass? Biogeochemistry 85: 235–252.
- Cleveland, C. C., S. C. Reed,and A. R. Townsend. 2006. Nutrient regulation of organic matter decomposition in a tropical rain forest. Ecology 87: 492–503.
- Cleveland, C. C.,and A. R. Townsend. 2006. Nutrient additions to a tropical rain forest drive substantial soil carbon dioxide losses to the atmosphere. Proceedings of the National Academy of Sciences USA 103: 10316–10321.
- Cleveland, C. C., A. R. Townsend, S. K. Schmidt,and B. C. Constance. 2003. Soil microbial dynamics and biogeochemistry in tropical forests and pastures, southwestern Costa Rica. Ecological Applications 13: 314–326.
- Cleveland, C. C., et al. 2011. Relationships among net primary productivity, nutrients, and climate in tropical rain forest: a pan-tropical analysis. Ecology Letters 14: 939–947.
- Condit, R., B. M. J. Engelbrecht, D. Pino, R. Pérez,and B. L. Turner. 2013. Species distributions in response to individual soil nutrients and seasonal drought across a community of tropical trees. Proceedings of the National Academy of Sciences USA. http://dx.doi.org/10.1073/pnas.1218042110
- Crews, T. E. 1999. The presence of nitrogen fixing legumes in terrestrial communities: evolutionary vs ecological considerations. Biogeochemistry 46: 233–246.
- Crews, T. E., K. Kitayama, J. H. Fownes, R. H. Riley, D. A. Herbert, D. Mueller-Dombois,and P. M. Vitousek. 1995. Changes in soil phosphorus fractions and ecosystem dynamics across a long chronosequence in Hawaii. Ecology 76: 1407–1424.
- Cuevas, E.,and E. Medina. 1988. Nutrient dynamics within Amazonian forests. II. Fine root growth, nutrient availability and leaf litter decomposition. Acta Oecologia 76: 222–235.
- Cusack, D. F., W. L. Silver, M. S. Torn,and W. H. McDowell. 2011. Effects of nitrogen additions on above- and belowground carbon dynamics in two tropical forests. Biogeochemistry 104: 203–225.
- Cusack, D. F., M. S. Torn, W. H. McDowell,and W. L. Silver. 2010. The response of heterotrophic activity and carbon cycling to nitrogen additions and warming in two tropical soils. Global Change Biology 16: 2555–2572.
- Davidson, E. A., et al. 2007. Recuperation of nitrogen cycling in Amazonian forests following agricultural abandonment. Nature 447: 995–998.
- DeForest, J. L., D. R. Zak, K. S. Pregitzer,and A. J. Burton. 2004. Atmospheric nitrate deposition, microbial community composition, and enzyme activity in northern hardwood forests. Soil Science Society of America Journal 68: 132–138.
- DeForest, J. L., D. R. Zak, K. S. Pregitzer,and A. J. Burton. 2005. Atmospheric nitrate deposition and enhanced dissolved organic carbon leaching: test of a potential mechanism. Soil Science Society of America Journal 69: 1233–1237.
- Dijkstra, P., C. M. LaViolette, J. S. Coyle, R. R. Doucett, E. Schwartz, S. C. Hart,and B. A. Hungate. 2008. 15N enrichment as an integrator of the effects of C and N on microbial metabolism and ecosystem function. Ecology Letters 11: 389–397.
- Drenovsky, R. E.,and J. H. Richards. 2004. Critical N:P values: predicting nutrient deficiencies in desert shrublands. Plant and Soil 259: 59–69.
- Ehlers, K., L. R. Bakken, A. Frostegard, E. Frossard,and E. K. Bunemann. 2010. Phosphorus limitation in a Ferralsol: impact on microbial activity and cell internal P pools. Soil Biology and Biochemistry 42: 558–566.
- Elser, J. J., et al. 2007. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine, and terrestrial ecosystems. Ecology Letters 10: 1135–1142.
-
Eviner, V. T.,
F. S. Chapin, III,and
C. E. Vaughn.
2000.
Nutrient manipulations in terrestrial ecosystems.
Pages
291–307
in
O. E Sala
R. B Jackson
H. A Mooneyand
R. W Howarth
editors.
Methods in ecosystem science.
Springer-Verlag,
New York, New York, USA.
10.1007/978-1-4612-1224-9_20 Google Scholar
- Falkowski, P. G., T. Fenchel,and E. F. DeLong. 2008. The microbial engines that drive earth's biogeochemical cycles. Science 320: 1034–1039.
- Fisher, J. B., Y. Malhi, I. C. Torres, D. B. Metcalfe, M. J. van de Weg, P. Meir, J. E. Silva-Espejo,and W. H. Huasco. 2013. Nutrient limitation in rainforests and cloud forests along a 3,000-m elevation gradient in the Peruvian Andes. Acta Oecologia 172: 889–902.
- Fontaine, S., A. Mariotti,and L. Abbadie. 2003. The priming effect of organic matter: a question of microbial competition? Soil Biology and Biochemistry 35: 837–843.
-
Fyllas, N. M.,
et al.
2009.
Basin-wide variations in foliar properties of Amazonian forest: phylogeny, soils and climate.
Biogeosciences
6:
3707–3796.
10.5194/bgd-6-3707-2009 Google Scholar
- Gallardo, A.,and W. Schlesinger. 1994. Factors limiting microbial biomass in the mineral soil and forest floor of a warm-temperate forest. Soil Biology and Biochemistry 26: 1409–1415.
- Gough, L., C. W. Osenberg, K. L. Gross,and S. L. Collins. 2000. Fertilization effects of species density and primary productivity in herbaceous plant communities. Oikos 89: 428–439.
- Graefe, S., D. Hertel,and C. Leuschner. 2010. N, P and K limitation of fine root growth along an elevation transect in tropical mountain forests. Acta Oecologia 36: 537–542.
- Grimm, N. B., et al. 2003. Merging aquatic and terrestrial perspectives of nutrient biogeochemistry. Acta Oecologia 137: 485–501.
- Hall, S. J.,and P. A. Matson. 2003. Nutrient status of tropical rain forests influences soil N dynamics after N additions. Ecological Monographs 73: 107–129.
- Harpole, W. S., et al. 2011. Nutrient co-limitation of primary producer communities. Ecology Letters 14: 852–862.
- Harrington, R. A., J. H. Fownes,and P. M. Vitousek. 2001. Production and resource use efficiencies in N- and P-limited tropical forests: a comparison of responses to long-term fertilization. Ecosystems 4: 646–657.
- Hart, S. C.,and D. Binkley. 1985. Correlations among indices of forest soil nutrient availability in fertilized and unfertilized loblolly pine plantations. Plant and Soil 85: 11–21.
- Hart, S. C., J. M. Stark, E. A. Davidson,and M. K. Firestone. 1994. Nitrogen mineralization, immobilization, and nitrification. Pages 985–1018 in R. W Weaver editor. Methods of soil analysis, part 2: microbiological and biochemical properties. Soil Science Society of America, Madison, Wisconsin, USA.
- Hedin, L. O., P. M. Vitousek,and P. A. Matson. 2003. Nutrient losses over four million years of tropical forest development. Ecology 84: 2231–2255.
- Hietz, P., B. L. Turner, W. Wanek, A. Richter, C. A. Nock,and S. J. Wright. 2011. Long-term change in the nitrogen cycle of tropical forests. Science 334: 664–666.
- Högberg, P. 1997. 15N natural abundance in soil-plant systems. New Phytologist 137: 179–203.
- Holtgrieve, G. W., et al. 2011. A coherent signature of anthropogenic nitrogen deposition to remote watersheds of the northern hemisphere. Science 334: 1545–1548.
- Homeier, J., et al. 2012. Tropical Andean forests are highly susceptible to nutrient inputs-rapid effects of experimental N and P addition to an Ecuadorian montane forest. PLoS ONE 7: e47128.
- Houlton, B. Z.,and E. Bai. 2009. Imprint of denitrifying bacteria on the global terrestrial biosphere. Proceedings of the National Academy of Sciences USA 106: 21713–21716.
- Hungate, B. A., J. S. Dukes, M. R. Shaw, Y. Luo,and C. B. Field. 2003. Nitrogen and climate change. Science 302: 1512–1513.
- Huntingford, C., et al. 2013. Simulated resilience of tropical rainforests to CO2-induced climate change. Nature Geoscience. http://dx.doi.org/10.1038/NGEO1741
- Ilstedt, U.,and S. Singh. 2005. Nitrogen and phosphorus limitations of microbial respiration in a tropical phosphorus-fixing acrisol (ultisol) compared with organic compost. Soil Biology and Biochemistry 37: 1407–1410.
- Kaspari, M., M. N. Garcia, K. E. Harms, M. Santana, S. J. Wright,and J. B. Yavitt. 2008. Multiple nutrients limit litterfall and decomposition in a tropical forest. Ecology Letters 11: 35–43.
- Kaye, J. P.,and S. C. Hart. 1997. Competition for nitrogen between plants and soil microorganisms. Trends in Ecology and Evolution 12: 139–143.
- Killingbeck, K. T. 1996. Nutrients in senesced leaves: keys to the search for potential resorption and resorption proficiency. Ecology 77: 1716–1727.
- Knowles, R.,and T. H. Blackburn. 1993. Nitrogen isotope techniques. Academic Press, San Diego, California, USA.
- Koerselman, W.,and A. F. M. Meuleman. 1996. The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation. Journal of Applied Ecology 33: 1441–1450.
- Kuzyakov, Y. 2002. Review: factors affecting rhizosphere priming effects. Journal of Plant Nutrition and Soil Science 165: 382–396.
-
Lawes, J. B.,and
J. H. Gilbert.
1880.
Agricultural, botanical, and chemical results of experiments on the mixed herbage of permanent meadow, conducted for more than twenty years in succession on the same land, Part 1.
Philosophical Transactions of the Royal Society of London
171:
289–416.
10.1098/rstl.1880.0010 Google Scholar
- Lebauer, D. S.,and K. K. Treseder. 2008. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89: 371–379.
- Luo, Y., D. Hui,and D. Zhang. 2006. Elevated CO2 stimulates net accumulations of carbon and nitrogen in land ecosystems: a meta-analysis. Ecology 87: 53–63.
- Magill, A. H.,and J. D. Aber. 2000. Variation in soil net mineralization rates with dissolved organic carbon additions. Soil Biology and Biochemistry 32: 597–601.
- Martinelli, L. A., S. Almeida, I. F. Brown, M. Z. Morerira, R. L. Victoria, S. Filoso, C. A. C. Ferreira,and W. W. Thomas. 2000. Variation in nutrient distribution and potential nutrient losses by selective logging in a humid tropical forest of Rondonia, Brazil. Biotropica 32 (4a): 597–613.
- Martinelli, L. A., et al. 1999. Nitrogen stable isotopic composition of leaves and soil: tropical versus temperate forests. Biogeochemistry 46: 45–65.
- Matson, P. A., W. H. McDowell, A. R. Townsend,and P. M. Vitousek. 1999. The globalization of N deposition: ecosystems consequences in tropical environments. Biogeochemistry 46: 67–83.
- McGill, W. B.,and C. V. Cole. 1981. Comparative aspects of cycling of organic C, N, S, and P through soil organic matter. Geoderma 26: 267–286.
- McGroddy, M. E., T. Daufresne,and L. O. Hedin. 2004. Scaling of C:N:P stoichiometry in forests worldwide: implications of terrestrial Redfield-type ratios. Ecology 85: 2390–2401.
- McLauchlan, K. K., J. J. Williams, J. M. Craine,and E. S. Jeffers. 2013. Changes in global nitrogen cycling during the Holocene epoch. Nature 495: 352–355.
- Mirmanto, E., J. Proctor, J. Green, L. Nagy,and Suriantata. 1999. Effects of nitrogen and phosphorus fertilization in a lowland evergreen rainforest. Philosophical Transactions of the Royal Society B 354: 1825–1829.
- Mooney, H. A., B. G. Drake, R. J. Luxmoore, W. C. Oechel,and L. F. Pitelka. 1991. Predicting ecosystem responses to elevated CO2 concentrations. BioScience 41: 96–104.
- Nardoto, G. B., J. P. H. B. Ometo, J. R. Ehleringer, N. Higuchi. M. M. C. Bustamante,and L. A. Martinelli. 2008. Understanding the influences of spatial patterns on N availability within the Brazilian Amazon forest. Ecosystems 11: 1234–1246.
- Olander, L. P.,and P. M. Vitousek. 2000. Regulation of soil phosphatase and chitinase activity by N and P availability. Biogeochemistry 49: 175–190.
- Ostertag, R. 2010. Foliar nitrogen and phosphorus accumulation responses after fertilization: an example from nutrient-limited Hawaiian forests. Plant and Soil 334: 85–98.
- Peltzer, D. A., et al. 2010. Understanding ecosystem retrogression. Ecological Monographs 80: 509–529.
- Perry, L. G., D. M. Blumenthal, T. A. Monaco, M. W. Paschke,and E. F. Redente. 2010. Immobilizing nitrogen to control plant invasion. Acta Oecologia 163: 13–24.
- Porder, S.,and G. E. Hilley. 2011. Linking chronosequences with the rest of the world: predicting soil phosphorus content in denuding landscapes. Biogeochemistry 102: 153–166.
- Pregitzer, K. S., A. J. Burton, D. R. Zak,and A. F. Talhelm. 2008. Simulated chronic nitrogen deposition increases carbon storage in northern temperate forests. Global Change Biology 14: 142–153.
-
Quesada, C. A.,
J. Lloyd,
L. O. Anderson,
N. M. Fyllas,
M. Schwarz,and
C. I. Czmiczik.
2009.
Soils of Amazonia with particular reference to the RAINFOR sites.
Biogeosciences
6:
3851–3921.
10.5194/bgd-6-3851-2009 Google Scholar
- Quesada, C. A., et al. 2012. Basin-wide variation in Amazon forest structure and function are mediated by both soils and climate. Biogeosciences 9: 2203–2246.
- Raich, J. W., R. H. Riley,and P. M. Vitousek. 1994. Use of root-ingrowth cores to assess nutrient limitations in forest ecosystems. Ecosystems 24: 2135–2138.
- Rastetter, E. B.,and G. R. Shaver. 1992. A model of multiple-element limitation for acclimating vegetation. Ecology 73: 1157–1174.
- Reed, S. C., C. C. Cleveland,and A. R. Townsend. 2007. Controls over free-living nitrogen fixation in a lowland tropical rain forest. Biotropica 39: 585–592.
- Reed, S. C., C. C. Cleveland,and A. R. Townsend. 2008. Tree species control rates of free-living nitrogen fixation in a tropical rain forest. Ecology 89: 2924–2934.
- Reed, S. C., A. R. Townsend, E. A. Davidson,and C. C. Cleveland. 2012. Stoichiometric patterns in foliar nutrient resorption across multiple scales. New Phytologist. http://dx.doi.org/10.1111/j.1469-8137.2012.04249.x
- Reed, S. C., P. M. Vitousek,and C. C. Cleveland. 2011. Are patterns in nutrient limitation belowground consistent with those aboveground: results from a 4 million year chronosequence. Biogeochemistry 106: 323–336.
- Reich, P. B.,and J. Oleksyn. 2004. Global patterns of plant leaf N and P in relation to temperature and latitude. Proceedings of the National Academy of Sciences USA 101: 11001–11006.
- Richardson, S. J., D. A. Peltzer, R. B. Allen,and M. S. McGlone. 2005. Resorption proficiency along a chronosequence: responses among communities and within species. Ecology 86: 20–25.
- Santiago, L. S., E. A. G. Schuur,and K. Silvera. 2005. Nutrient cycling and plant-soil feedbacks along a precipitation gradient in lowland Panama. Journal of Tropical Ecology 21: 461–470.
- Sayer, E. J., et al. 2012. Variable responses of lowland tropical forest nutrient status to fertilization and litter manipulation. Ecosystems 15: 387–400.
- Selmants, P. C.,and S. C. Hart. 2008. Substrate age and tree islands influence carbon and nitrogen dynamics across a retrogressive semiarid chronosequence. Global Biogeochemical Cycles 22: GB1021.
- Selmants, P. C.,and S. C. Hart. 2010. Phosphorus and soil development: does the Walker and Syers model apply to semiarid ecosystems? Ecology 91: 474–484.
- Sinsabaugh, R. L. 1994. Enzymic analysis of microbial pattern and process. Biology and Fertility of Soils 17: 69–74.
- Sinsabaugh, R. L., R. K. Antibus, A. E. Linkins, L. Rayburn, D. Repert,and T. Weiland. 1993. Wood decomposition: nitrogen and phosphorus dynamics in relation to extracellular enzyme activity. Ecology 74: 1586–1593.
- Sinsabaugh, R. L.,and J. J. Follstad Shah. 2012. Ecoenzymatic stoichiometry and ecological theory. Annual Review of Ecology, Evolution, and Systematics 43: 313–343.
- Sinsabaugh, R. L.,and D. L. Moorhead. 1994. Resource allocation to extracellular enzyme production: a model for nitrogen and phosphorus control of litter decomposition. Soil Biology and Biochemistry 26: 1305–1311.
- Sinsabaugh, R. L., et al. 2008. Stoichiometry of soil enzyme activity at global scale. Ecology Letters 11: 1252–1264.
- Sjogersten, S., A. W. Cheesman, O. Lopez,and B. L. Turner. 2011. Biogeochemical processes along a nutrient gradient in a tropical ombrotrophic peatland. Biogeochemistry 104: 147–163.
- Stevens, P. R. 1968. A chronosequence of soils near Franz Josef glacier. Dissertation. Lincoln College, University of Canterbury, Lincoln, New Zealand.
- Stewart, C. G. 2000. A test of nutrient limitation in two tropical montane forests using root ingrowth cores. Biotropica 32: 369–373.
- Sullivan, B. W.,and S. C. Hart. 2013. Evaluation of mechanisms controlling the priming of soil carbon along a substrate age gradient. Soil Biology and Biochemistry 58: 293–301.
- Syers, J. K., A. E. Johnston,and D. Curtin. 2008. Efficiency of soil and fertilizer phosphorus use: reconciling changing concepts of soil phosphorus behaviour with agronomic information. Fertilizer and plant nutrition bulletin. Food and Agriculture Organization of the United Nations, Rome, Italy.
- Tanner, E. V. J., P. M. Vitousek,and E. Cuevas. 1998. Experimental investigation of nutrient limitation of forest growth on wet tropical mountains. Ecology 79: 10–22.
- Thornton, P. E., J.-F. Lamarque, N. A. Rosenbloom,and N. M. Mahowald. 2007. Influence of carbon–nitrogen cycle coupling on land model response to CO2 fertilization and climate variability. Global Biogeochemical Cycles 21: GB4018.
- Tilman, D., K. G. Cassman, P. A. Matson, R. Naylor,and S. Polasky. 2002. Agricultural sustainability and intensive production practices. Nature 418: 671–677.
- Townsend, A. R.,and G. P. Asner. 2013. Multiple dimensions of resource limitation in tropical forests. Proceedings of the National Academy of Sciences USA 110: 4864–4865.
- Townsend, A. R., G. P. Asner,and C. C. Cleveland. 2008. The biogeochemical heterogeneity of tropical forests. Trends in Ecology and Evolution 23: 424–431.
- Townsend, A. R., C. C. Cleveland, G. Asner,and M. Bustamante. 2007. Controls of foliar N:P ratios in tropical rain forests. Ecology 88: 107–118.
- Townsend, A. R., C. C. Cleveland, B. Z. Houlton, C. B. Alden,and J. W. C. White. 2011. Multi-element regulation of the tropical forest carbon cycle. Frontiers in Ecology and the Environment 9: 9–17.
- Treseder, K. K.,and P. M. Vitousek. 2001. Effects of soil nutrient availability on investment in acquisition of N and P in Hawaiian rain forests. Ecology 82: 946–954.
- van der Ploeg, R. R., W. Böhm,and M. B. Kirkham. 1999. On the origin of the theory of mineral nutrition of plants and the law of the minimum. Soil Science Society of America Journal 63: 1055–1062.
- Vitousek, P. M. 1982. Nutrient cycling and nutrient use efficiency. American Naturalist 119: 553–572.
- Vitousek, P. M. 1984. Nutrient cycling, and nutrient limitation in tropical forests. Ecology 65: 285–298.
- Vitousek, P. M. 1998. Foliar and litter nutrients, nutrient resorption, and decomposition in Hawaiian Metrosideros polymorpha. Ecosystems 1: 401–407.
-
Vitousek, P. M.
2004.
Nutrient cycling and limitation: Hawaii as a model system.
Princeton University Press,
Princeton, New Jersey, USA.
10.1515/9780691190341 Google Scholar
- Vitousek, P. M., O. A. Chadwick, T. E. Crews, J. H. Fownes, D. M. Hendricks,and D. Herbert. 1997. Soil and ecosystem development across the Hawaiian Islands. GSA Today 7: 1–8.
- Vitousek, P. M.,and R. W. Howarth. 1991. Nitrogen limitation on land and in the sea: how can it occur? Biogeochemistry 13: 87–115.
- Vitousek, P. M., S. Porder, B. Z. Houlton,and O. A. Chadwick. 2010. Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen-phosphorus interactions. Ecological Applications 20: 5–15.
- Vitousek, P. M.,and W. A. Reiners. 1975. Ecosystem succession and nutrient retention: a hypothesis. BioScience 25: 376–381.
- Walker, T. W.,and J. K. Syers. 1976. The fate of phosphorus during pedogenesis. Geoderma 15: 1–19.
- Wright, S. J., et al. 2011. Potassium, phosphorus, or nitrogen limit root allocation, tree growth, or litter production in a lowland tropical forest. Ecology 92: 1616–1625.
- Yarie, J.,and K. Van Cleve. 1996. Effects of carbon, fertilizer, and drought on foliar chemistry of tree species in interior Alaska. Ecological Applications 6: 815–827.