Journal list menu
Climate, fire size, and biophysical setting control fire severity and spatial pattern in the northern Cascade Range, USA
Corresponding Author
C. Alina Cansler
School of Environmental and Forest Sciences, University of Washington, Seattle, Washington 98195-2100 USA
E-mail: [email protected]Search for more papers by this authorDonald McKenzie
Pacific Wildland Fire Sciences Lab, USDA Forest Service, Seattle, Washington 98103 USA
Search for more papers by this authorCorresponding Author
C. Alina Cansler
School of Environmental and Forest Sciences, University of Washington, Seattle, Washington 98195-2100 USA
E-mail: [email protected]Search for more papers by this authorDonald McKenzie
Pacific Wildland Fire Sciences Lab, USDA Forest Service, Seattle, Washington 98103 USA
Search for more papers by this authorCorresponding Editor: C. H. Sieg.
Abstract
Warmer and drier climate over the past few decades has brought larger fire sizes and increased annual area burned in forested ecosystems of western North America, and continued increases in annual area burned are expected due to climate change. As warming continues, fires may also increase in severity and produce larger contiguous patches of severely burned areas. We used remotely sensed burn-severity data from 125 fires in the northern Cascade Range of Washington, USA, to explore relationships between fire size, severity, and the spatial pattern of severity. We examined relationships between climate and the annual area burned and the size of wildfires over a 25-year period. We tested the hypothesis that increased fire size is commensurate with increased burn severity and increased spatial aggregation of severely burned areas. We also asked how local ecological controls might modulate these relationships by comparing results over the whole study area (the northern Cascade Range) to those from four ecological subsections within it. We found significant positive relationships between climate and fire size, and between fire size and the proportion of high severity and spatial-pattern metrics that quantify the spatial aggregation of high-severity areas within fires, but the strength and significance of these relationships varied among the four subsections. In areas with more contiguous subalpine forests and less complex topography, the proportion and spatial aggregation of severely burned areas were more strongly correlated with fire size. If fire sizes increase in a warming climate, changes in the extent, severity, and spatial pattern of fire regimes are likely to be more pronounced in higher-severity fire regimes with less complex topography and more continuous fuels.
Supporting Information
Filename | Description |
---|---|
https://dx.doi.org/10.6084/m9.figshare.c.3296267 | Research data pertaining to this article is located at figshare.com: |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
Literature Cited
- Abatzoglou, J.,and C. Kolden. 2013. Relationships between climate and macroscale area burned in the western United States. International Journal of Wildland Fire 22: 1003–1020.
- Agee, J. K. 1993. Fire ecology of Pacific Northwest forests. Island Press. Washington, D.C., USA.
- Agee, J. K. 1997. The severe weather wildfire— Too hot to handle? Northwest Science 71: 153–156.
- Agee, J. K., M. Finney,and R. de Gouvenain. 1990. Forest fire history of Desolation Peak, Washington. Canadian Journal of Forest Research 20: 350–356.
- Agee, J. K., et al . 1985. Vegetation and fuel mapping of North Cascades National Park Service Complex. Final report CX-9000-3-E029. National Park Service, Cooperative Park Studies Unit, College of Forest Resources, University of Washington, Seattle, Washington, USA.
- Anderegg, W. R. L., J. M. Kane,and L. D. L. Anderegg. 2013. Consequences of widespread tree mortality triggered by drought and temperature stress. Nature Climate Change 3: 30–36.
- Bessie, W.,and E. Johnson. 1995. The relative importance of fuels and weather on fire behavior in subalpine forests. Ecology 76: 747–762.
- Bowman, D. M., B. P. Murphy, M. M. Boer, R. A. Bradstock, G. J. Cary, M. A. Cochrane, R. J. Fensham, M. A. Krawchuk, O. F. Price,and R. J. Williams. 2013. Forest fire management, climate change, and the risk of catastrophic carbon losses. Frontiers in Ecology and the Environment 11: 66–68.
- Brubaker, L. 1986. Responses of tree populations to climatic change. Plant Ecology 67: 119–130.
- Buchalski, M. R., J. B. Fontaine, P. A. Heady III, J. P. Hayes,and W. F. Frick. 2013. Bat response to differing fire severity in mixed-conifer forest, California, USA. PLoS ONE 8: e57884.
- Cansler, C. A. 2011. Drivers of burn severity in the northern Cascade Range, Washington, USA. Thesis. University of Washington, Seattle, Washington, USA. http://hdl.handle.net/1773/16539
- Cansler, C. A.,and D. McKenzie. 2012. How robust are burn severity indices when applied in a new region? Evaluation of alternate field-based and remote-sensing methods. Remote Sensing 4: 456–483.
- Churchill, D. J., A. J. Larson, M. C. Dahlgreen, J. F. Franklin, P. F. Hessburg,and J. A. Lutz. 2013. Restoring forest resilience: From reference spatial patterns to silvicultural prescriptions and monitoring. Forest Ecology and Management 291: 442–457.
- Cleland, D. T., P. E. Avers, W. H. McNab, M. E. Jensen, R. G. Bailey, T. King,and W. E. Russell. 1997. National hierarchical framework of ecological units. Pages 181–200 in M. S Boyceand A Harney editors. Ecosystem management applications for sustainable forest and wildlife resources. Yale University Press, New Haven, Connecticut, USA.
- Collins, B. M., J. D. Miller, A. E. Thode, M. Kelly, J. W. van Wagtendonk,and S. L. Stephens. 2009. Interactions among wildland fires in a long-established Sierra Nevada natural fire area. Ecosystems 12: 114–128.
- Collins, B. M.,and S. L. Stephens. 2010. Stand-replacing patches within a “mixed severity” fire regime: quantitative characterization using recent fires in a long-established natural fire area. Landscape Ecology 25: 927–939.
- Cushman, S., K. McGarigal,and M. Neel. 2008. Parsimony in landscape metrics: Strength, universality, and consistency. Ecological Indicators 8: 691–703.
- Daly, C., W. P. Gibson, G. H. Taylor, G. L. Johnson,and P. Pasteris. 2002. A knowledge-based approach to the statistical mapping of climate. Climate Research 22: 99–113.
- Dillon, G. K., Z. A. Holden, P. Morgan, M. A. Crimmins, E. K. Heyerdahl,and C. H. Luce. 2011. Both topography and climate affected forest and woodland burn severity in two regions of the western US, 1984 to 2006. Ecosphere 2: art130.
- Donato, D. C., J. B. Fontaine, J. L. Campbell, W. D. Robinson, J. B. Kauffman,and B. E. Law. 2009. Conifer regeneration in stand-replacement portions of a large mixed-severity wildfire in the Klamath–Siskiyou Mountains. Canadian Journal of Forest Research 39: 823–838.
- Dudley, J. G., V. A. Saab,and J. P. Hollenbeck. 2012. Foraging-habitat selection of Black-backed Woodpeckers in forest burns of southwestern Idaho. Condor 114: 348–357.
- Duffy, P. A., J. Epting, J. M. Graham, T. S. Rupp,and A. D. McGuire. 2007. Analysis of Alaskan burn severity patterns using remotely sensed data. International Journal of Wildland Fire 16: 277–284.
- ECOMAP. 2007. Delineation, peer review, and refinement of subregions of the conterminous United States. USDA General Technical Report WO-76A. USDA Forest Service, Washington, D.C., USA. http://fsgeodata.fs.fed.us/other_resources//ecosubregions.php
-
Eidenshink, J.,
B. Schwind,
K. Brewer,
Z. Zhu,
B. Quayle,and
S. Howard.
2007.
A project for monitoring trends in burn severity.
Fire Ecology
3:
3–21.
10.4996/fireecology.0301003 Google Scholar
- Fahnestock, G. R. 1976. Fires, fuel, and flora as factors in wilderness management: the Pasayten case. Proceedings of the Tall Timbers Fire Ecology Conference 15: 33–70.
- Flannigan, M. D., A. S. Cantin, W. J. de Groot, M. Wotton, A. Newbery,and L. M. Gowman. 2013. Global wildland fire season severity in the 21st century. Forest Ecology and Management 294: 54–61.
- Flannigan, M. D., M. A. Krawchuk, W. J. de Groot, B. M. Wotton,and L. M. Gowman. 2009. Implications of changing climate for global wildland fire. International Journal of Wildland Fire 18: 483–507.
- Franklin, J. F.,and C. T. Dyrness. 1988. Natural vegetation of Oregon and Washington. Second edition. Oregon State University Press, Corvallis, Oregon, USA.
-
Haire, S. L.,and
K. McGarigal.
2009.
Changes in fire severity across gradients of climate, fire size, and topography: A landscape ecological perspective.
Fire Ecology
5:
86–103.
10.4996/fireecology.0502086 Google Scholar
- Haire, S. L.,and K. McGarigal. 2010. Effects of landscape patterns of fire severity on regenerating ponderosa pine forests (Pinus ponderosa) in New Mexico and Arizona, USA. Landscape Ecology 25: 1055–1069.
- Haire, S. L., K. McGarigal,and C. Miller. 2013. Wilderness shapes contemporary fire size distributions across landscapes of the western United States. Ecosphere 4: 1–20.
- Hessburg, P. F., J. K. Agee,and J. F. Franklin. 2005. Dry forests and wildland fires of the inland Northwest USA: Contrasting the landscape ecology of the pre-settlement and modern eras. Forest Ecology and Management 211: 117–139.
- Hessburg, P. F., R. B. Salter,and K. M. James. 2007. Re-examining fire severity relations in pre-management era mixed conifer forests: inferences from landscape patterns of forest structure. Landscape Ecology 22: 5–24.
- Heyerdahl, E. K., D. McKenzie, L. D. Daniels, A. E. Hessl, J. S. Littell,and N. J. Mantua. 2008 a. Climate drivers of regionally synchronous fires in the inland Northwest (1651–1900). International Journal of Wildland Fire 17: 40–49.
- Heyerdahl, E. K., P. Morgan,and J. P. Riser. 2008 b. Multi-season climate synchronized historical fires in dry forests (1650–1900), northern Rockies, USA. Ecology 89: 705–716.
- Hicke, J. A., M. C. Johnson, J. L. Hayes,and H. K. Preisler. 2012. Effects of bark beetle-caused tree mortality on wildfire. Forest Ecology and Management 271: 81–90.
- HilleRisLambers, J., M. A. Harsch, A. K. Ettinger, K. R. Ford,and E. J. Theobald. 2013. How will biotic interactions influence climate change-induced range shifts? Annals of the New York Academy of Sciences 1297: 112–125.
-
Holling, C. S.
1973.
Resilience and stability of ecological systems.
Annual Review of Ecology and Systematics
4:
1–23.
10.1146/annurev.es.04.110173.000245 Google Scholar
- Hunter, M. E., J. M. Iniguez,and L. B. Lentile. 2011. Short- and long-term effects on fuels, forest structure, and wildfire potential from prescribed fire and resource benefit fire in southwestern forests, USA. Fire Ecology 7: 108–121.
- Keane, R. E., J. K. Agee, P. Fulé, J. E. Keeley, C. Key, S. G. Kitchen, R. Miller,and L. A. Schulte. 2008. Ecological effects of large fires on US landscapes: benefit or catastrophe? International Journal of Wildland Fire 17: 696–712.
- Kennedy, M. C.,and D. McKenzie. 2010. Using a stochastic model and cross-scale analysis to evaluate controls on historical low-severity fire regimes. Landscape Ecology 25: 1561–1573.
- Kutner, M. C., C. J. Nachtsheim, J. Neter,and W. Li. 2005. Applied linear statistical models. Fifth edition. McGraw-Hill, Boston, Massachusetts, USA.
- Larson, A. J., R. T. Belote, C. A. Cansler, S. A. Parks,and M. S. Dietz. 2013. Latent resilience in ponderosa pine forest: effects of resumed frequent fire. Ecological Applications 23: 1243–1249.
- Larson, A. J.,and D. Churchill. 2012. Tree spatial patterns in fire-frequent forests of western North America, including mechanisms of pattern formation and implications for designing fuel reduction and restoration treatments. Forest Ecology and Management 267: 74–92.
-
Lentile, L. B.,
P. Morgan,
A. T. Hudak,
M. J. Bobbitt,
S. A. Lewis,
A. M. S. S. Smith,and
P. R. Robichaud.
2007.
Post-fire burn severity and vegetation response following eight large wildfires across the western United States.
Fire Ecology
3:
91–108.
10.4996/fireecology.0301091 Google Scholar
- Levin, S. A. 1992. The problem of pattern and scale in ecology: The Robert H. MacArthur Award lecture. Ecology 73: 1943–1967.
- Littell, J. S., D. McKenzie, D. L. Peterson,and A. L. Westerling. 2009. Climate and wildfire area burned in western U.S. ecoprovinces, 1916–2003. Ecological Applications 19: 1003–1021.
- Littell, J. S., E. E. Oneil, D. McKenzie, J. A. Hicke, J. A. Lutz, R. A. Norheim,and M. M. Elsner. 2010. Forest ecosystems, disturbance, and climatic change in Washington State, USA. Climatic Change 102: 129–158.
- Lorenz, T. J., K. A. Sullivan, A. V. Bakian,and C. A. Aubry. 2011. Cache-site selection in Clark's Nutcracker (Nucifraga columbiana). Auk 128: 237–247.
- Lutz, J. A., C. H. Key, C. A. Kolden, J. T. Kane,and J. W. van Wagtendonk. 2011. Fire frequency, area burned, and severity: A quantitative approach to defining a normal fire year. Fire Ecology 7: 51–65.
- Lutz, J. A., J. W. van Wagtendonk, A. E. Thode, J. D. Miller,and J. F. Franklin. 2009. Climate, lightning ignitions, and fire severity in Yosemite National Park, California, USA. International Journal of Wildland Fire 18: 765–774.
- Lydersen, J.,and M. North. 2012. Topographic variation in structure of mixed-conifer forests under an active-fire regime. Ecosystems 15: 1134–1146.
- Lyons-Tinsley, C.,and D. L. Peterson. 2012. Surface fuel treatments in young, regenerating stands affect wildfire severity in a mixed conifer forest, eastside Cascade Range, Washington, USA. Forest Ecology and Management 270: 117–125.
- McCaughey, W. W., W. C. Schmidt,and R. C. Shearer. 1986. Seed-dispersal characteristics of conifers in the inland mountain west. Pages 50–62 in R. C Shearer compiler. Proceedings—Conifer Tree Seed in the Inland Mountain West Symposium. General Technical Report INT-GRT-203. USDA Forest Service, Intermountain Research Station, Ogden, Utah, USA.
- McGarigal, K., S. A. Cushman, M. C. Neel,and E. Ene. 2002. FRAGSTATS: Spatial pattern analysis program for categorical maps. Version 3.3. University of Massachusetts, Amherst, Massachusetts, USA. http://www.umass.edu/landeco/research/fragstats/fragstats.html
- McKenzie, D., Z. Gedalof, D. L. Peterson,and P. Mote. 2004. Climatic change, wildfire, and conservation. Conservation Biology 18: 890–902.
- McKenzie, D.,and M. C. Kennedy. 2011. Scaling laws and complexity in fire regimes. Chapter 2 in D McKenzie C Millerand D. A Falk editors. 2011. The landscape ecology of fire. Springer, Dordrecht, The Netherlands.
- McKenzie, D.,and M. C. Kennedy. 2012. Power laws reveal phase transitions in landscape controls of fire regimes. Nature Communications 3: 726– 730.
- McKenzie, D.,and J. S. Littell. 2011. Climate change and wilderness fire regimes. International Journal of Wilderness 17: 22–27.31.
-
McKenzie, D.,
C. Miller,and
D. A. Falk.
2011.
Synthesis: landscape ecology and changing fire regimes.
Pages
295–303
in
D McKenzie
C Millerand
D. A Falk
editors.
The landscape ecology of fire.
Springer,
Dordrecht, The Netherlands.
10.1007/978-94-007-0301-8_12 Google Scholar
- Meigs, G. W., D. C. Donato, J. L. Campbell, J. G. Martin,and B. E. Law. 2009. Forest fire impacts on carbon uptake, storage, and emission: The role of burn severity in the Eastern Cascades, Oregon. Ecosystems 12: 1246–1267.
- Miller, J. D., B. M. Collins, J. A. Lutz, S. L. Stephens, J. W. van Wagtendonk,and D. A. Yasuda. 2012 b. Differences in wildfires among ecoregions and land management agencies in the Sierra Nevada region, California, USA. Ecosphere 3: 1–20.
- Miller, J. D., E. E. Knapp, C. H. Key, C. N. Skinner, C. J. Isbell, R. M. Creasy,and J. W. Sherlock. 2009 a. Calibration and validation of the Relative differenced Normalized Burn Ratio (RdNBR) to three measures of fire severity in the Sierra Nevada and Klamath Mountains, California, USA. Remote Sensing of Environment 113: 645–656.
- Miller, J. D., H. D. Safford, M. Crimmins,and A. E. Thode. 2009 b. Quantitative evidence for increasing forest fire severity in the Sierra Nevada and southern Cascade Mountains, California and Nevada, USA. Ecosystems 12: 16–32.
- Miller, J. D., C. N. Skinner, H. D. Safford, E. E. Knapp,and C. M. Ramirez. 2012 a. Trends and causes of severity, size, and number of fires in northwestern California, USA. Ecological Applications 22: 184–203.
- Miller, J. D.,and A. E. Thode. 2007. Quantifying burn severity in a heterogeneous landscape with a relative version of the delta Normalized Burn Ratio (dNBR). Remote Sensing of Environment 109: 66–80.
- Moritz, M. A., P. F. Hessburg,and N. A. Povak. 2011. Native fire regimes and landscape resilience. Pages 51–86 in D McKenzie C Millerand D. A Falk editors. The landscape ecology of fire. Springer, Dordrecht, The Netherlands.
- Mote, P. W.,and E. P. Salathé. 2010. Future climate in the Pacific Northwest. Climatic Change 102: 29–50.
- Neary, D. G., C. C. Klopatek, L. F. DeBano,and P. F. Ffolliott. 1999. Fire effects on belowground sustainability: a review and synthesis. Forest Ecology and Management 122: 57–71.
- Neel, M. C., K. McGarigal,and S. A. Cushman. 2004. Behavior of class-level landscape metrics across gradients of class aggregation and area. Landscape Ecology 19: 435–455.
- North, M., B. M. Collins,and S. Stephens. 2012. Using fire to increase the scale, benefits, and future maintenance of fuels treatments. Journal of Forestry 110: 392–401.
- Parks, S. A., C. Miller, C. R. Nelson,and Z. A. Holden. 2014. Previous fires moderate burn severity of subsequent wildland fires in two large western US wilderness areas. Ecosystems 17:29– 42.
- Perry, D. A., P. F. Hessburg, C. N. Skinner, T. A. Spies, S. L. Stephens, A. H. Taylor, J. F. Franklin, B. McComb,and G. Riegel. 2011. The ecology of mixed severity fire regimes in Washington, Oregon, and Northern California. Forest Ecology and Management 262: 703–717.
- Peterson, D. L., C. I. Millar, L. A. Joyce, M. J. Furniss, J. E. Halofsky, R. P. Neilson,and T. L. Morelli. 2011. Responding to climate change in national forests: A guidebook for developing adaptation options. USDA General Technical Report PNW-GTR-855, USDA Forest Service, Pacific Northwest Research Station, Portland, Oregon, USA.
- Peterson, G. D. 2002. Contagious disturbance, ecological memory, and the emergence of landscape pattern. Ecosystems 5: 329–338.
- Pickett, S. T. A.,and P. S. White. 1985. The ecology of natural disturbance and patch dynamics. Academic Press, New York, New York, USA.
- Prichard, S. J., Z. Gedalof, W. W. Oswald,and D. L. Peterson. 2009. Holocene fire and vegetation dynamics in a montane forest, North Cascade Range, Washington, USA. Quaternary Research 72: 57–67.
- Prichard, S. J.,and M. C. Kennedy. 2012. Fuel treatment effects on tree mortality following wildfire in dry mixed conifer forests, Washington State, USA. International Journal of Wildland Fire 21: 1004–1013.
- R Development Core Team. 2010. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/
- Raymond, C. L.,and D. McKenzie. 2012. Carbon dynamics of forests in Washington, USA: 21st century projections based on climate-driven changes in fire regimes. Ecological Applications 22: 1589–1611.
- Raymond, C., D. Peterson,and R. Rochefort. 2013. The North Cascadia Adaptation Partnership: A science–management collaboration for responding to climate change. Sustainability 5: 136–159.
-
Roberts, S. L.,
J. W. van Wagtendonk,
A. K. Miles,
D. A. Kelt,and
J. A. Lutz.
2008.
Modeling the effects of fire severity and spatial complexity on small mammals in Yosemite National Park, California.
Fire Ecology
4:
83–104.
10.4996/fireecology.0402083 Google Scholar
- Rollins, M. G.,and C. K. Frame. 2006. The LANDFIRE Prototype Project: Nationally consistent and locally relevant geospatial data for wildland fire management. USDA General Technical Report RMRS-GTR-175. USDA Forest Service, Rocky Mountain Research Station, Fort Collins, Colorado, USA.
- Savage, M.,and J. Mast. 2005. How resilient are southwestern ponderosa pine forests after crown fires? Canadian Journal of Forest Research 35: 967–977.
- Savage, M., J. N. Mast,and J. J. Feddema. 2013. Double whammy: high-severity fire and drought in ponderosa pine forests of the Southwest. Canadian Journal of Forest Research 43: 570–583.
-
Smithwick, E. A. H.
2011.
Pyrogeography and biogeochemical resilience.
Pages
143–164
in
D McKenzie
C Millerand
D. A Falk
editors.
The landscape ecology of fire.
Springer,
Dordrecht, The Netherlands.
10.1007/978-94-007-0301-8_6 Google Scholar
- Soverel, N. O., D. D. B. Perrakis,and N. C. Coops. 2010. Estimating burn severity from Landsat dNBR and RdNBR indices across western Canada. Remote Sensing of Environment 114: 1896–1909.
- Sugihara, N. G., J. W. van Wagtendonk,and J. Fites-Kaufmann. 2006. Fire as an ecological process. Pages 58–74 in N. G Sugihara J. W van Wagtendonk K. E Shaffer J Fites-Kaufmanand A. E Thode editors. Fire in California's ecosystems. University of California Press, Berkeley, California, USA.
- Swanson, F. J. 1981. Fire and geomorphic processes. Pages 401–444 in H. A Mooney T. M Bonnicksen N. L Christensen J. E Lotanand W. A Reiners editors. Proceedings of the Conference on Fire Regimes and Ecosystem Properties. USDA Forest Service General Technical Report WO-26, USDA, Washington, D.C., USA.
- Swanson, M. E., J. F. Franklin, R. L. Beschta, C. M. Crisafulli, D. A. DellaSala, R. L. Hutto, D. B. Lindenmayer,and F. J. Swanson. 2011. The forgotten stage of forest succession: early-successional ecosystems on forest sites. Frontiers in Ecology and the Environment 9: 117–125.
- Taleb, N. N. 2012. Anti-fragile: Things that gain from disorder. Random House, New York, New York, USA.
- Teske, C. C. 2012. Fire-on-fire interactions in three large wilderness areas. Dissertation. University of Idaho, Moscow, Idaho, USA.
- Teske, C. C., C. A. Seielstad,and L. P. Queen. 2012. Characterizing fire-on-fire interactions in three large wilderness areas. Fire Ecology 8: 82–106.
- Thompson, J. R.,and T. A. Spies. 2009. Vegetation and weather explain variation in crown damage within a large mixed-severity wildfire. Forest Ecology and Management 258: 1684–1694.
- Turner, M. G., W. W. Hargrove, R. H. Gardner,and W. H. Romme. 1994. Effects of fire on landscape heterogeneity in Yellowstone National Park, Wyoming. Journal of Vegetation Science 5: 731–742.
- Turner, M. G.,and W. H. Romme. 1994. Landscape dynamics in crown fire ecosystems. Landscape Ecology 9: 59–77.
- Turner, M. G., W. H. Romme,and R. H. Gardner. 1999. Prefire heterogeneity, fire severity, and early postfire plant reestablishment in subalpine forests of Yellowstone National Park, Wyoming. International Journal of Wildland Fire 9: 21–36.
- Turner, M. G., W. H. Romme, R. H. Gardner,and W. W. Hargrove. 1997. Effects of fire size and pattern on early succession in Yellowstone National Park. Ecological Monographs 67: 411–433.
- van Nes, E. H.,and M. Scheffer. 2005. Implications of spatial heterogeneity for catastrophic regime shifts in ecosystems. Ecology 86: 1797–1807.
-
van Wagtendonk, J. W.,and
J. A. Lutz.
2007.
Fire regime attributes of wildland fires in Yosemite National Park, USA.
Fire Ecology
3:
34–52.
10.4996/fireecology.0302034 Google Scholar
- Vander Wall, S. B. 2008. On the relative contributions of wind vs. animals to seed dispersal of four Sierra Nevada pines. Ecology 89: 1837–1849.
- Westerling, A. L., M. G. Turner, E. A. H. Smithwick, W. H. Romme,and M. G. Ryan. 2011. Continued warming could transform Greater Yellowstone fire regimes by mid-21st century. Proceedings of the National Academy of Sciences USA 108: 13165–13170.
- Whittaker, R. 1960. Vegetation of the Siskiyou Mountains, Oregon and California. Ecological Monographs 30: 279–338.
- Wightman, C. S., V. A. Saab, C. Forristal, K. Mellen-McLean,and A. Markus. 2010. White-headed woodpecker nesting ecology after wildfire. Journal of Wildlife Management 74: 1098–1106.
- Wotton, B. M., C. A. Nock,and M. D. Flannigan. 2010. Forest fire occurrence and climate change in Canada. International Journal of Wildland Fire 19: 253–271.