Journal list menu
Comparison of solar-induced chlorophyll fluorescence, light-use efficiency, and process-based GPP models in maize
Pradeep Wagle
Department of Microbiology and Plant Biology, Centre for Spatial Analysis, University of Oklahoma, Norman, Oklahoma, 73019 USA
Search for more papers by this authorCorresponding Author
Yongguang Zhang
Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, International Institute for Earth System Sciences, Nanjing University, 210023 Nanjing, China
Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, 210023 Nanjing, China
Remote Sensing Section, Helmholtz Center Potsdam, GFZ German Research Center for Geosciences, Telegrafenberg A17, 14473 Potsdam, Germany
E-mail: [email protected]Search for more papers by this authorCui Jin
Department of Microbiology and Plant Biology, Centre for Spatial Analysis, University of Oklahoma, Norman, Oklahoma, 73019 USA
Search for more papers by this authorXiangming Xiao
Department of Microbiology and Plant Biology, Centre for Spatial Analysis, University of Oklahoma, Norman, Oklahoma, 73019 USA
Insitute of Biodiversity Science, Fudan University, Shanghai, 200433 China
Search for more papers by this authorPradeep Wagle
Department of Microbiology and Plant Biology, Centre for Spatial Analysis, University of Oklahoma, Norman, Oklahoma, 73019 USA
Search for more papers by this authorCorresponding Author
Yongguang Zhang
Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, International Institute for Earth System Sciences, Nanjing University, 210023 Nanjing, China
Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, 210023 Nanjing, China
Remote Sensing Section, Helmholtz Center Potsdam, GFZ German Research Center for Geosciences, Telegrafenberg A17, 14473 Potsdam, Germany
E-mail: [email protected]Search for more papers by this authorCui Jin
Department of Microbiology and Plant Biology, Centre for Spatial Analysis, University of Oklahoma, Norman, Oklahoma, 73019 USA
Search for more papers by this authorXiangming Xiao
Department of Microbiology and Plant Biology, Centre for Spatial Analysis, University of Oklahoma, Norman, Oklahoma, 73019 USA
Insitute of Biodiversity Science, Fudan University, Shanghai, 200433 China
Search for more papers by this authorAbstract
Accurately quantifying cropland gross primary production (GPP) is of great importance to monitor cropland status and carbon budgets. Satellite-based light-use efficiency (LUE) models and process-based terrestrial biosphere models (TBMs) have been widely used to quantify cropland GPP at different scales in past decades. However, model estimates of GPP are still subject to large uncertainties, especially for croplands. More recently, space-borne solar-induced chlorophyll fluorescence (SIF) has shown the ability to monitor photosynthesis from space, providing new insights into actual photosynthesis monitoring. In this study, we examined the potential of SIF data to describe maize phenology and evaluated three GPP modeling approaches (space-borne SIF retrievals, a LUE-based vegetation photosynthesis model [VPM], and a process-based soil canopy observation of photochemistry and energy flux [SCOPE] model constrained by SIF) at a maize (Zea mays L.) site in Mead, Nebraska, USA. The result shows that SIF captured the seasonal variations (particularly during the early and late growing season) of tower-derived GPP (GPP_EC) much better than did satellite-based vegetation indices (enhanced vegetation index [EVI] and land surface water index [LSWI]). Consequently, SIF was strongly correlated with GPP_EC than were EVI and LSWI. Evaluation of GPP estimates against GPP_EC during the growing season demonstrated that all three modeling approaches provided reasonable estimates of maize GPP, with Pearson's correlation coefficients (r) of 0.97, 0.94, and 0.93 for the SCOPE, VPM, and SIF models, respectively. The SCOPE model provided the best simulation of maize GPP when SIF observations were incorporated through optimizing the key parameter of maximum carboxylation capacity (Vcmax). Our results illustrate the potential of SIF data to offer an additional way to investigate the seasonality of photosynthetic activity, to constrain process-based models for improving GPP estimates, and to reasonably estimate GPP by integrating SIF and GPP_EC data without dependency on climate inputs and satellite-based vegetation indices.
Literature Cited
- Chen, T., G. R. van der Werf, A. Dolman, and M. Groenendijk. 2011. Evaluation of cropland maximum light use efficiency using eddy flux measurements in North America and Europe. Geophysical Research Letters 38, L14707, doi:10.1029/2011GL047533.
- Cheng, Y.-B., Q. Zhang, A. I. Lyapustin, Y. Wang, and E. M. Middleton. 2014. Impacts of light use efficiency and fPAR parameterization on gross primary production modeling. Agricultural and Forest Meteorology 189: 187–197.
- Churkina, G., D. Schimel, B. H. Braswell, and X. Xiao. 2005. Spatial analysis of growing season length control over net ecosystem exchange. Global Change Biology 11: 1777–1787.
- Collatz, G. J., J. T. Ball, C. Grivet, and J. A. Berry. 1991. Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: a model that includes a laminar boundary layer. Agricultural and Forest Meteorology 54: 107–136.
- Collatz, G. J., M. Ribas-Carbo, and J. Berry. 1992. Coupled photosynthesis-stomatal conductance model for leaves of C4 plants. Functional Plant Biology 19: 519–538.
- Dash, J., and P. Curran. 2004. The MERIS terrestrial chlorophyll index. International Journal of Remote Sensing, 25: 5403-5413.
- FAO. 2013. Statistical yearbook 2013: world food and agriculture. Food and Agriculture Organization of the United Nations, Rome.
- Farquhar, G. D., S. von Caemmerer, and J. A. Berry. 1980. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149: 78–90.
- Fisher, J. I., J. F. Mustard, and M. A. Vadeboncoeur. 2006. Green leaf phenology at Landsat resolution: scaling from the field to the satellite. Remote Sensing of Environment 100: 265–279.
- Frankenberg, C., J. B. Fisher, J. Worden, G. Badgley, S. S. Saatchi, J. E. Lee, G. C. Toon, A. Butz, M. Jung, and A. Kuze. 2011. New global observations of the terrestrial carbon cycle from GOSAT: patterns of plant fluorescence with gross primary productivity. Geophysical Research Letters 38, L17706, doi:10.1029/2011GL048738.
- Frankenberg, C., C. O'Dell, J. Berry, L. Guanter, J. Joiner, P. Köhler, R. Pollock, and T. E. Taylor. 2014. Prospects for chlorophyll fluorescence remote sensing from the Orbiting Carbon Observatory-2. Remote Sensing of Environment 147: 1–12.
- Friedl, M. A., D. Sulla-Menashe, B. Tan, A. Schneider, N. Ramankutty, A. Sibley, and X. Huang. 2010. MODIS Collection 5 global land cover: algorithm refinements and characterization of new datasets. Remote Sensing of Environment 114: 168–182.
- Gitelson, A. A., A. Viña, S. B. Verma, D. C. Rundquist, T. J. Arkebauer, G. Keydan, B. Leavitt, V. Ciganda, G. G. Burba, and A. E. Suyker. 2006. Relationship between gross primary production and chlorophyll content in crops: implications for the synoptic monitoring of vegetation productivity. Journal of Geophysical Research: Atmospheres 111: D08S11.
- Gray, J. M., S. Frolking, E. A. Kort, D. K. Ray, C. J. Kucharik, N. Ramankutty, and M. A. Friedl. 2014. Direct human influence on atmospheric CO2 seasonality from increased cropland productivity. Nature 515: 398–401.
- Guanter, L., C. Frankenberg, A. Dudhia, P. E. Lewis, J. Gómez-Dans, A. Kuze, H. Suto, and R. G. Grainger. 2012. Retrieval and global assessment of terrestrial chlorophyll fluorescence from GOSAT space measurements. Remote Sensing of Environment 121: 236–251.
- Guanter, L., Y. Zhang, M. Jung, J. Joiner, M. Voigt, J. A. Berry, C. Frankenberg, A. R. Huete, P. Zarco-Tejada, and J.-E. Lee. 2014. Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence. Proceedings of the National Academy of Sciences USA 111: E1327–E1333.
- Hatfield, J., 2012. Agriculture in the Midwest. In: US National Climate Assessment Midwest Technical Input Report. J. Winkler, J. Andresen, J. Hatfield, D. Bidwell, and D. Brown, coordinators. Available from the Great Lakes Integrated Sciences and Assessments (GLISA) Center, http://glisa.msu.edu/docs/NCA/MTIT_Agriculture.pdf.
- Heinsch, F. A., M. Zhao, S. W. Running, J. S. Kimball, R. R. Nemani, K. J. Davis, P. V. Bolstad, B. D. Cook, A. R. Desai, and D. M. Ricciuto. 2006. Evaluation of remote sensing based terrestrial productivity from MODIS using regional tower eddy flux network observations. IEEE Transactions on Geoscience and Remote Sensing 44: 1908–1925.
- Hilker, T., N. C. Coops, M. A. Wulder, T. A. Black, and R. D. Guy. 2008. The use of remote sensing in light use efficiency based models of gross primary production: a review of current status and future requirements. Science of the Total Environment 404: 411–423.
- Huete, A., K. Didan, T. Miura, E. P. Rodriguez, X. Gao, and L. G. Ferreira. 2002. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment 83: 195–213.
- Huntzinger, D., W. M. Post, Y. Wei, A. Michalak, T. O. West, A. Jacobson, I. Baker, J. M. Chen, K. Davis, and D. Hayes. 2012. North American Carbon Program (NACP) regional interim synthesis: terrestrial biospheric model intercomparison. Ecological Modelling 232: 144–157.
- Jans, W. W., C. M. Jacobs, B. Kruijt, J. A. Elbers, S. Barendse, and E. J. Moors. 2010. Carbon exchange of a maize (Zea mays L.) crop: influence of phenology. Agriculture, Ecosystems & Environment 139: 316–324.
- Jin, C., X. Xiao, P. Wagle, T. Griffis, J. Dong, C. Wu, Y. Qin, and D. R. Cook. 2015. Effects of in-situ and reanalysis climate data on estimation of cropland gross primary production using the vegetation photosynthesis model. Agricultural and Forest Meteorology 213: 240–250.
- Joiner, J., Y. Yoshida, A. Vasilkov, and E. Middleton. 2011. First observations of global and seasonal terrestrial chlorophyll fluorescence from space. Biogeosciences 8: 637–651.
- Joiner, J., L. Guanter, R. Lindstrot, M. Voigt, A. Vasilkov, E. Middleton, K. Huemmrich, Y. Yoshida, and C. Frankenberg. 2013. Global monitoring of terrestrial chlorophyll fluorescence from moderate-spectral-resolution near-infrared satellite measurements: methodology, simulations, and application to GOME-2. Atmospheric Measurement Techniques 6: 2803–2823.
- Joiner, J., Y. Yoshida, A. Vasilkov, K. Schaefer, M. Jung, L. Guanter, Y. Zhang, S. Garrity, E. Middleton, and K. Huemmrich. 2014. The seasonal cycle of satellite chlorophyll fluorescence observations and its relationship to vegetation phenology and ecosystem atmosphere carbon exchange. Remote Sensing of Environment 152: 375–391.
- Jönsson, P., and L. Eklundh. 2004. TIMESAT: a program for analyzing time-series of satellite sensor data. Computers & Geosciences 30: 833–845.
- Jung, M., M. Vetter, M. Herold, G. Churkina, M. Reichstein, S. Zaehle, P. Ciais, N. Viovy, A. Bondeau, and Y. Chen. 2007. Uncertainties of modeling gross primary productivity over Europe: a systematic study on the effects of using different drivers and terrestrial biosphere models. Global Biogeochemical Cycles 21, GB4021, doi:10.1029/2006GB002915.
- Jung, M., M. Reichstein, H. A. Margolis, A. Cescatti, A. D. Richardson, M. A. Arain, A. Arneth, C. Bernhofer, D. Bonal, and J. Chen. 2011. Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations. Journal of Geophysical Research: Biogeosciences 2005–2012: 116.
- Kalfas, J. L., X. Xiao, D. X. Vanegas, S. B. Verma, and A. E. Suyker. 2011. Modeling gross primary production of irrigated and rain-fed maize using MODIS imagery and CO2 flux tower data. Agricultural and Forest Meteorology 151: 1514–1528.
- Miller, J., M. Berger, Y. Goulas, S. Jacquemoud, J. Louis, G. Mohammed, N. Moise, J. Moreno, I. Moya, and R. Pedrós. 2005. Development of a vegetation fluorescence canopy model. ESTEC Contract 16365.
- Monteith, J. 1972. Solar radiation and productivity in tropical ecosystems. Journal of Applied Ecology 9: 747–766.
- Myneni, R., S. Hoffman, Y. Knyazikhin, J. Privette, J. Glassy, Y. Tian, Y. Wang, X. Song, Y. Zhang, and G. Smith. 2002. Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data. Remote Sensing of Environment 83: 214–231.
- Nightingale, J., N. Coops, R. Waring, and W. Hargrove. 2007. Comparison of MODIS gross primary production estimates for forests across the USA with those generated by a simple process model, 3-PGS. Remote Sensing of Environment 109: 500–509.
- Ogutu, B. O., and J. Dash. 2013. An algorithm to derive the fraction of photosynthetically active radiation absorbed by photosynthetic elements of the canopy (FAPARps) from eddy covariance flux tower data. New Phytologist 197: 511–523.
- Peters, W., A. R. Jacobson, C. Sweeney, A. E. Andrews, T. J. Conway, K. Masarie, J. B. Miller, L. M. Bruhwiler, G. Petron, and A. I. Hirsch. 2007. An atmospheric perspective on North American carbon dioxide exchange: CarbonTracker. Proceedings of the National Academy of Sciences 104: 18925–18930.
- Potter, C. S., J. T. Randerson, C. B. Field, P. A. Matson, P. M. Vitousek, H. A. Mooney, and S. A. Klooster. 1993. Terrestrial ecosystem production: a process model based on global satellite and surface data. Global Biogeochemical Cycles 7: 811–841.
- Raich, J., E. Rastetter, J. Melillo, D. Kicklighter, P. Steudler, B. Peterson, A. Grace, B. Moore Iii, and C. Vorosmarty. 1991. Potential net primary productivity in South America: application of a global model. Ecological Applications 1: 399–429.
- Reichstein, M., E. Falge, D. Baldocchi, D. Papale, M. Aubinet, P. Berbigier, C. Bernhofer, N. Buchmann, T. Gilmanov, and A. Granier. 2005. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Global Change Biology 11: 1424–1439.
- Richardson, A. D., R. S. Anderson, M. A. Arain, A. G. Barr, G. Bohrer, G. Chen, J. M. Chen, P. Ciais, K. J. Davis, and A. R. Desai. 2012. Terrestrial biosphere models need better representation of vegetation phenology: results from the North American Carbon Program Site Synthesis. Global Change Biology 18: 566–584.
- Ruimy, A., G. Dedieu, and B. Saugier. 1996. TURC: a diagnostic model of continental gross primary productivity and net primary productivity. Global Biogeochemical Cycles 10: 269–285.
- Running, S. W., R. R. Nemani, F. A. Heinsch, M. Zhao, M. Reeves, and H. Hashimoto. 2004. A continuous satellite-derived measure of global terrestrial primary production. BioScience 54: 547–560.
- Schaefer, K., C. R. Schwalm, C. Williams, M. A. Arain, A. Barr, J. M. Chen, K. J. Davis, D. Dimitrov, T. W. Hilton, and D. Y. Hollinger. 2012. A model-data comparison of gross primary productivity: results from the North American Carbon Program site synthesis. Journal of Geophysical Research: Biogeosciences 2005–2012: 117.
- Sellers, P., R. Dickinson, D. Randall, A. Betts, F. Hall, J. Berry, G. Collatz, A. Denning, H. Mooney, and C. Nobre. 1997. Modeling the exchanges of energy, water, and carbon between continents and the atmosphere. Science 275: 502–509.
- Sims, D. A., A. F. Rahman, V. D. Cordova, B. Z. El-Masri, D. D. Baldocchi, P. V. Bolstad, L. B. Flanagan, A. H. Goldstein, D. Y. Hollinger, and L. Misson. 2008. A new model of gross primary productivity for North American ecosystems based solely on the enhanced vegetation index and land surface temperature from MODIS. Remote Sensing of Environment 112: 1633–1646.
- Suyker, A. E., and S. B. Verma. 2012. Gross primary production and ecosystem respiration of irrigated and rainfed maize–soybean cropping systems over 8 years. Agricultural and Forest Meteorology 165: 12–24.
- Van der Tol, C., W. Verhoef, J. Timmermans, A. Verhoef, and Z. Su. 2009a. An integrated model of soil-canopy spectral radiances, photosynthesis, fluorescence, temperature and energy balance. Biogeosciences 6: 3109–3129.
- Van der Tol, C., W. Verhoef, and A. Rosema. 2009b. A model for chlorophyll fluorescence and photosynthesis at leaf scale. Agricultural and Forest Meteorology 149: 96–105.
- Veefkind, J., I. Aben, K. McMullan, H. Förster, J. De Vries, G. Otter, J. Claas, H. Eskes, J. De Haan, and Q. Kleipool. 2012. TROPOMI on the ESA Sentinel-5 Precursor: a GMES mission for global observations of the atmospheric composition for climate, air quality and ozone layer applications. Remote Sensing of Environment 120: 70–83.
- Verhoef, W., and H. Bach. 2007. Coupled soil–leaf-canopy and atmosphere radiative transfer modeling to simulate hyperspectral multi-angular surface reflectance and TOA radiance data. Remote Sensing of Environment 109: 166–182.
- Verma, S. B., A. Dobermann, K. G. Cassman, D. T. Walters, J. M. Knops, T. J. Arkebauer, A. E. Suyker, G. G. Burba, B. Amos, and H. Yang. 2005. Annual carbon dioxide exchange in irrigated and rainfed maize-based agroecosystems. Agricultural and Forest Meteorology 131: 77–96.
- Wagle, P., X. Xiao, M. S. Torn, D. R. Cook, R. Matamala, M. L. Fischer, C. Jin, J. Dong, and C. Biradar. 2014. Sensitivity of vegetation indices and gross primary production of tallgrass prairie to severe drought. Remote Sensing of Environment 152: 1–14.
- Wagle, P., X. Xiao, and A. E. Suyker. 2015. Estimation and analysis of gross primary production of soybean under various management practices and drought conditions. ISPRS Journal of Photogrammetry and Remote Sensing 99: 70–83.
- Wang, W., J. Dungan, H. Hashimoto, A. R. Michaelis, C. Milesi, K. Ichii, and R. R. Nemani. 2011. Diagnosing and assessing uncertainties of terrestrial ecosystem models in a multimodel ensemble experiment: 1. Primary production. Global Change Biology 17: 1350–1366.
- Wu, C., J. M. Chen, and N. Huang. 2011. Predicting gross primary production from the enhanced vegetation index and photosynthetically active radiation: evaluation and calibration. Remote Sensing of Environment 115: 3424–3435.
- Xiao, X., D. Hollinger, J. Aber, M. Goltz, E. A. Davidson, Q. Zhang, and B. Moore Iii. 2004. Satellite-based modeling of gross primary production in an evergreen needleleaf forest. Remote Sensing of Environment 89: 519–534.
- Xiao, X., S. Boles, J. Liu, D. Zhuang, S. Frolking, C. Li, W. Salas, and B. Moore. 2005. Mapping paddy rice agriculture in southern China using multi-temporal MODIS images. Remote Sensing of Environment 95: 480–492.
- Yan, H., Y. Fu, X. Xiao, H. Q. Huang, H. He, and L. Ediger. 2009. Modeling gross primary productivity for winter wheat–maize double cropping system using MODIS time series and CO2 eddy flux tower data. Agriculture, Ecosystems & Environment 129: 391–400.
- Yuan, W., S. Liu, G. Zhou, G. Zhou, L. L. Tieszen, D. Baldocchi, C. Bernhofer, H. Gholz, A. H. Goldstein, and M. L. Goulden. 2007. Deriving a light use efficiency model from eddy covariance flux data for predicting daily gross primary production across biomes. Agricultural and Forest Meteorology 143: 189–207.
- Zeng, N., F. Zhao, G. J. Collatz, E. Kalnay, R. J. Salawitch, T. O. West, and L. Guanter. 2014. Agricultural Green Revolution as a driver of increasing atmospheric CO2 seasonal amplitude. Nature 515: 394–397.
- Zhang, Q., X. Xiao, B. Braswell, E. Linder, F. Baret, and B. Moore. 2005. Estimating light absorption by chlorophyll, leaf and canopy in a deciduous broadleaf forest using MODIS data and a radiative transfer model. Remote Sensing of Environment 99: 357–371.
- Zhang, Q., E. M. Middleton, H. A. Margolis, G. G. Drolet, A. A. Barr, and T. A. Black. 2009. Can a satellite-derived estimate of the fraction of PAR absorbed by chlorophyll (FAPAR chl) improve predictions of light-use efficiency and ecosystem photosynthesis for a boreal aspen forest? Remote Sensing of Environment 113: 880–888.
- Zhang, Y., L. Guanter, J. A. Berry, J. Joiner, C. Tol, A. Huete, A. Gitelson, M. Voigt, and P. Köhler. 2014. Estimation of vegetation photosynthetic capacity from space-based measurements of chlorophyll fluorescence for terrestrial biosphere models. Global Change Biology 20: 3727–3742.