Journal list menu
The seasonal energetic landscape of an apex marine carnivore, the polar bear
Corresponding Author
Anthony M. Pagano
U.S. Geological Survey, Alaska Science Center, 4210 University Drive, Anchorage, Alaska, 99508 USA
Department of Ecology & Evolutionary Biology, University of California Santa Cruz, 130 McAllister Way, Santa Cruz, California, 95060 USA
E-mail: [email protected]
Search for more papers by this authorTodd C. Atwood
U.S. Geological Survey, Alaska Science Center, 4210 University Drive, Anchorage, Alaska, 99508 USA
Search for more papers by this authorGeorge M. Durner
U.S. Geological Survey, Alaska Science Center, 4210 University Drive, Anchorage, Alaska, 99508 USA
Search for more papers by this authorTerrie M. Williams
Department of Ecology & Evolutionary Biology, University of California Santa Cruz, 130 McAllister Way, Santa Cruz, California, 95060 USA
Search for more papers by this authorCorresponding Author
Anthony M. Pagano
U.S. Geological Survey, Alaska Science Center, 4210 University Drive, Anchorage, Alaska, 99508 USA
Department of Ecology & Evolutionary Biology, University of California Santa Cruz, 130 McAllister Way, Santa Cruz, California, 95060 USA
E-mail: [email protected]
Search for more papers by this authorTodd C. Atwood
U.S. Geological Survey, Alaska Science Center, 4210 University Drive, Anchorage, Alaska, 99508 USA
Search for more papers by this authorGeorge M. Durner
U.S. Geological Survey, Alaska Science Center, 4210 University Drive, Anchorage, Alaska, 99508 USA
Search for more papers by this authorTerrie M. Williams
Department of Ecology & Evolutionary Biology, University of California Santa Cruz, 130 McAllister Way, Santa Cruz, California, 95060 USA
Search for more papers by this authorAbstract
Divergent movement strategies have enabled wildlife populations to adapt to environmental change. In recent decades, the Southern Beaufort Sea subpopulation of polar bears (Ursus maritimus) has developed a divergent movement strategy in response to diminishing sea ice where the majority of the subpopulation (73–85%) stays on the sea ice in summer and the remaining bears move to land. Although declines in sea ice are generally considered a challenge to energy balance in polar bears residing in some regions of the Arctic, little quantitative data exists concerning the seasonal energy expenditures of this apex marine carnivore. We used GPS satellite collars with tri-axial accelerometers and conductivity sensors to measure the location, behavior, and energy expenditure of five adult female polar bears in the southern Beaufort Sea across seasons of sea ice breakup and minimum extent. Using a Bayesian mixed-effects model, we found that energy expenditure was influenced by month, ocean depth, and habitat type (sea ice or land). Total energy expenditure from May through September ranged from 37.7 to 47.2 mJ/kg for individual bears. Bears that moved to land expended 7% more energy on average from May through September than bears that remained on the receding sea ice. In August, when bears were moving from the sea ice to land or moving north with the receding pack ice, bears that moved to land spent 7% more time swimming and expended 22% more energy. This means the immediate cost of moving to land exceeded the cost of remaining on the receding summer pack ice. These findings suggest a physiological reason why the majority of the Southern Beaufort Sea subpopulation continues to inhabit a diminishing summer ice platform. However, bears that moved to land spent 29% more time in preferred hunting habitats over the continental shelf than bears that remained on the sea ice. Bears on land also had access to subsistence-harvested bowhead whale carcasses. Hence, our findings indicate there may be a greater overall energetic benefit to move to land in this region, which suggests that the use of the diminishing summer sea ice may be functioning as an ecological trap.
Open Research
Data Availability
Data used in this paper are archived in the USGS Alaska Science Center data repository at https://doi.org/10.5066/P9VA5I0M
Supporting Information
Filename | Description |
---|---|
ecy2959-sup-0001-AppendixS1.pdfPDF document, 3.6 MB | |
ecy2959-sup-0002-VideoS1.movvideo/mov, 10 MB | |
ecy2959-sup-0003-VideoS1Legend.pdfPDF document, 104.7 KB |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
Literature Cited
- Amstrup, S. C., I. Stirling, and J. W. Lentfer. 1986. Past and present status of polar bears in Alaska. Wildlife Society Bulletin 14: 241–254.
- Amstrup, S. C., B. G. Marcot, and D. C. Douglas. 2008. A Bayesian network modeling approach to forecasting the 21st century worldwide status of polar bears. Pages 213–268in E. T. DeWeaver, C. M. Blitz, and L.-B. Tremblay, editors. Arctic sea ice decline: observations, projections, mechanisms, and implications. Geophysics monograph series 180. American Geophysical Union, Washington, D.C., USA.
- Atwood, T. C., E. Peacock, M. A. McKinney, K. Lillie, R. Wilson, D. C. Douglas, S. Miller, and P. Terletzky. 2016. Rapid environmental change drives increased land use by an Arctic marine predator. PLoS ONE 11:e0155932.
- Atwood, T. C., et al. 2017. Environmental and behavioral changes may influence the exposure of an Arctic apex predator to pathogens and contaminants. Scientific Reports 7: 13193.
- Auger-Méthé, M., M. A. Lewis, and A. E. Derocher. 2016. Home ranges in moving habitats: polar bears and sea ice. Ecography 39: 26–35.
- Barnhart, K. R., C. R. Miller, I. Overeem, and J. E. Kay. 2016. Mapping the future expansion of Arctic open water. Nature Climate Change 6: 280–285.
- Battin, J. 2004. When good animals love bad habitats: Ecological traps and the conservation of animal populations. Conservation Biology 18: 1482–1491.
- Bennitt, E., M. C. Bonyongo, and S. Harris. 2016. Effects of divergent migratory strategies on access to resources for Cape buffalo (Syncerus caffer caffer). Journal of Mammalogy 97: 1682–1698.
- Bentzen, T. W., E. H. Follmann, S. C. Amstrup, G. S. York, M. J. Wooller, and T. M. O'Hara. 2007. Variation in winter diet of southern Beaufort Sea polar bears inferred from stable isotope analysis. Canadian Journal of Zoology 85: 596–608.
- Best, R. C. 1985. Digestibility of ringed seals by the polar bear. Canadian Journal of Zoology 63: 1033–1036.
- Blix, A. S., and J. W. Lentfer. 1979. Modes of thermal protection in polar bear cubs–at birth and on emergence from the den. American Journal of Physiology 236: R67–74.
- Both, C., C. A. M. Van Turnhout, R. G. Bijlsma, H. Siepel, A. J. Van Strien, and R. P. B. Foppen. 2010. Avian population consequences of climate change are most severe for long-distance migrants in seasonal habitats. Proceedings of the Royal Society B 277: 1259–1266.
- Bourque, J. 2019. Onshore habitat use as a driver of diet, contaminant exposure, and immune function of southern Beaufort Sea polar bears (Ursus maritimus). University of Connecticut, Storrs, Connecticut, USA.
- Breiman, L.. 2001. Random forests. Machine Learning 45: 5–32.
- Bromaghin, J. F., T. L. McDonald, I. Stirling, A. E. Derocher, E. S. Richardson, E. V. Regehr, D. C. Douglas, G. M. Durner, T. Atwood, and S. C. Amstrup. 2015. Polar bear population dynamics in the southern Beaufort Sea during a period of sea ice decline. Ecological Applications 25: 634–651.
- Brown, J. H., J. F. Gillooly, A. P. Allen, V. M. Savage, and G. B. West. 2004. Toward a metabolic theory of ecology. Ecology 85: 1771–1789.
- Calenge, C. 2006. The package “adehabitat” for the R software: A tool for the analysis of space and habitat use by animals. Ecological Modelling 197: 516–519.
- Charnov, E. L. 1976. Optimal foraging, the marginal value theorem. Theoretical Population Biology 9: 129–136.
- Courtemanch, A. B., M. J. Kauffman, S. Kilpatrick, and S. R. Dewey. 2017. Alternative foraging strategies enable a mountain ungulate to persist after migration loss. Ecosphere 8:e01855.
- Douglas, D. C., R. Weinzierl, S. C. Davidson, R. Kays, M. Wikelski, and G. Bohrer. 2012. Moderating Argos location errors in animal tracking data. Methods in Ecology and Evolution 3: 999–1007.
- Durner, G. M., et al. 2009. Predicting 21st-century polar bear habitat distribution from global climate models. Ecological Monographs 79: 25–58.
- Durner, G. M., D. C. Douglas, S. E. Albeke, J. P. Whiteman, M. Ben-David, S. C. Amstrup, E. Richardson, and R. R. Wilson. 2017. Increased Arctic sea ice drift alters adult female polar bear movements and energetics. Global Change Biology 23: 3460–3473.
- Durner, G. M., D. C. Douglas, and T. C. Atwood. 2019. Are polar bear habitat resource selection functions developed from 1985–1995 data still useful? Ecology and Evolution 9: 8625–8638.
- Ernakovich, J. G., K. A. Hopping, A. B. Berdanier, R. T. Simpson, E. J. Kachergis, H. Steltzer, and M. D. Wallenstein. 2014. Predicted responses of arctic and alpine ecosystems to altered seasonality under climate change. Global Change Biology 20: 3256–3269.
- Frair, J. L., J. Fieberg, M. Hebblewhite, F. Cagnacci, N. J. DeCesare, and L. Pedrotti. 2010. Resolving issues of imprecise and habitat-biased locations in ecological analyses using GPS telemetry data. Philosophical Transactions of the Royal Society B 365: 2187–2200.
- Gallagher, A. J., S. Creel, R. P. Wilson, and S. J. Cooke. 2017. Energy landscapes and the landscape of fear. Trends in Ecology & Evolution 32: 88–96.
- Geissmann, Q., L. G. Rodriguez, E. J. Beckwith, and G. F. Gilestro. 2019. Rethomics: an R framework to analyse high-throughput behavioural data. PLoS ONE 14:e0209331.
- Gelman, A., and D. B. Rubin. 1992. Inference from iterative simulation using multiple sequences. Statistical Science 7: 457–511.
10.1214/ss/1177011136 Google Scholar
- Griffen, B. D. 2018. Modeling the metabolic costs of swimming in polar bears (Ursus maritimus). Polar Biology 41: 491–503.
- Harwood, L. A., T. G. Smith, and J. C. Auld. 2012. Fall migration of ringed seals (Phoca hispida) through the Beaufort and Chukchi Seas, 2001–02. Arctic 65: 35–44.
- Herreman, J., and E. Peacock. 2013. Polar bear use of a persistent food subsidy: insights from non-invasive genetic sampling in Alaska. Ursus 24: 148–163.
- Huang, W. S., and D. A. Pike. 2011. Climate change impacts on fitness depend on nesting habitat in lizards. Functional Ecology 25: 1125–1136.
- Jakobsson, M., et al. 2012. The International Bathymetric Chart of the Arctic Ocean (IBCAO) version 3.0. Geophysical Research Letters 39: L12609.
- Johnson, D. S., and J. M. London. 2018. Crawl: an R package for fitting continuous-time correlated random walk models to animal movement data. R package.
- Johnson, D. S., J. M. London, M.-A. Lea, and J. W. Durban. 2008. Continuous-time correlated random walk model for animal telemetry data. Ecology 89: 1208–1215.
- Koski, W. R., J. C. George, G. Sheffield, and M. S. Galginattis. 2005. Subsistence harvests of bowhead whales (Balaena mysticetus) at Kaktovik, Alaska (1973–2000). Journal of Cetacean Research and Management 7: 33–37.
- Kwok, R., and G. F. Cunningham. 2010. Contribution of melt in the Beaufort Sea to the decline in Arctic multiyear sea ice coverage: 1993–2009. Geophysical Research Letters 37: L20501.
- Laidre, K. L., I. Stirling, L. F. Lowry, Ø. Wiig, M. P. Heide-Jørgensen, and S. H. Ferguson. 2008. Quantifying the sensitivity of Arctic marine mammals to climate-induced habitat change. Ecological Applications 18: S97–S125.
- Laidre, K. L., I. Stirling, J. A. Estes, A. Kochnev, and J. Roberts. 2018. Historical and potential future importance of large whales as food for polar bears. Frontiers in Ecology and the Environment 16: 515–524.
- Laliberté, F., S. E. L. Howell, and P. J. Kushner. 2015. Regional variability of a projected sea ice-free Arctic during the summer months. Geophysical Research Letters 43: 256–263.
- Leblond, M., M. H. St-Laurent, and S. D. Côté. 2016. Caribou, water, and ice - fine-scale movements of a migratory arctic ungulate in the context of climate change. Movement Ecology 4: 14.
- Lillie, K. M., E. M. Gese, T. C. Atwood, and S. A. Sonsthagen. 2018. Development of on-shore behavior among polar bears (Ursus maritimus) in the southern Beaufort Sea: inherited or learned? Ecology and Evolution 8: 7790–7799.
- Louzao, M., T. Wiegand, F. Bartumeus, and H. Weimerskirch. 2014. Coupling instantaneous energy-budget models and behavioural mode analysis to estimate optimal foraging strategy: an example with wandering albatrosses. Movement Ecology 2: 8.
- Masello, J. F., A. Kato, J. Sommerfeld, T. Mattern, and P. Quillfeldt. 2017. How animals distribute themselves in space: variable energy landscapes. Frontiers in Zoology 14: 33.
- Mauritzen, M., A. E. Derocher, O. Pavlova, and Ø. Wiig. 2003. Female polar bears, Ursus maritimus, on the Barents Sea drift ice: walking the treadmill. Animal Behaviour 66: 107–113.
- Messier, F., M. K. Taylor, and M. A. Ramsay. 1992. Seasonal activity patterns of female polar bears (Ursus maritimus) in the Canadian Arctic as revealed by satellite telemetry. Journal of Zoology 226: 219–229.
- Miller, S., J. Wilder, and R. R. Wilson. 2015. Polar bear – grizzly bear interactions during the autumn open-water period in Alaska. Journal of Mammalogy 96: 1317–1325.
- Monnett, C., and J. S. Gleason. 2006. Observations of mortality associated with extended open-water swimming by polar bears in the Alaskan Beaufort Sea. Polar Biology 29: 681–687.
- Olson, J. W., K. D. Rode, D. Eggett, T. S. Smith, R. R. Wilson, G. M. Durner, A. Fischbach, T. C. Atwood, and D. C. Douglas. 2017. Collar temperature sensor data reveal long-term patterns in southern Beaufort Sea polar bear den distribution on pack ice and land. Marine Ecology Progress Series 564: 211–224.
- Overland, J. E., and M. Wang. 2013. When will the summer Arctic be nearly sea ice free? Geophysical Research Letters 40: 2097–2101.
- Pagano, A. M., and T. M. Williams. 2019. Estimating the energy expenditure of free-ranging polar bears using tri-axial accelerometers: a validation with doubly labeled water. Ecology and Evolution 9: 4210–4219.
- Pagano, A. M., G. M. Durner, S. C. Amstrup, K. S. Simac, and G. S. York. 2012. Long-distance swimming by polar bears (Ursus maritimus) of the southern Beaufort Sea during years of extensive open water. Canadian Journal of Zoology 90: 663–676.
- Pagano, A. M., et al. 2017. Using tri-axial accelerometers to identify wild polar bear behaviors. Endangered Species Research 32: 19–33.
- Pagano, A. M., G. M. Durner, K. D. Rode, T. C. Atwood, S. N. Atkinson, E. Peacock, D. P. Costa, M. A. Owen, and T. M. Williams. 2018. High-energy, high-fat lifestyle challenges an Arctic apex predator, the polar bear. Science 359: 568–572.
- Pagano, A. M., A. Cutting, N. Nicassio-Hiskey, A. Hash, and T. M. Williams. 2019. Energetic costs of aquatic locomotion in a subadult polar bear. Marine Mammal Science 35: 649–659.
- Pilfold, N. W., A. Mccall, A. E. Derocher, N. J. Lunn, and E. Richardson. 2017. Migratory response of polar bears to sea ice loss: to swim or not to swim. Ecography 40: 189–199.
- Platonov, N. G., V. V. Rozhnov, I. V. Alpatsky, I. N. Mordvintsev, E. A. Ivanov, and S. V. Naidenko. 2014. Evaluation of polar bear movement patterns in relation to sea ice drift. Doklady Biological Sciences 456: 191–194.
- Plummer, M.2003. JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling. Page 10in K. Hornik, F. Leisch, and A. Zeileis, editors. Proceedings of the 3rd International Workshop on Distributed Statistical Computing. Technische Universitat, Vienna, Austria.
- Plummer, M. M. 2016. rjags: Bayesian Graphical Models using MCMC. R package. http://mcmc-jags.sourceforge.net/
- Pongracz, J. D., and A. E. Derocher. 2017. Summer refugia of polar bears (Ursus maritimus) in the southern Beaufort Sea. Polar Biology 40: 753–763.
- Post, E., et al. 2009. Ecological dynamics across the Arctic associated with recent climate change. Science 325: 1355–1358.
- Pyke, G. H., H. R. Pulliam, and E. L. Charnov. 1977. Optimal foraging: a selective review of theory and tests. Quarterly Review of Biology 52: 137–154.
- R Core Team. 2018. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
- Regehr, E. V., C. M. Hunter, H. Caswell, S. C. Amstrup, and I. Stirling. 2010. Survival and breeding of polar bears in the southern Beaufort Sea in relation to sea ice. Journal of Animal Ecology 79: 117–127.
- Robertson, B. A., and R. L. Hutto. 2006. A framework for understanding ecological traps and an evaluation of existing evidence. Ecology 87: 1075–1085.
- Rode, K. D., S. C. Amstrup, and E. V. Regehr. 2010. Reduced body size and cub recruitment in polar bears associated with sea ice decline. Ecological Applications 20: 768–782.
- Rode, K. D., A. M. Pagano, J. F. Bromaghin, T. C. Atwood, G. M. Durner, K. S. Simac, and S. C. Amstrup. 2014a. Effects of capturing and collaring on polar bears: findings from long-term research on the Southern Beaufort Sea population. Wildlife Research 41: 311–322.
- Rode, K. D., E. V. Regehr, D. C. Douglas, G. Durner, A. E. Derocher, G. W. Thiemann, and S. M. Budge. 2014b. Variation in the response of an Arctic top predator experiencing habitat loss: feeding and reproductive ecology of two polar bear populations. Global Change Biology 20: 76–88.
- Rode, K. D., C. T. Robbins, L. Nelson, and S. C. Amstrup. 2015. Can polar bears use terrestrial foods to offset lost ice-based hunting opportunities? Frontiers in Ecology and the Environment 13: 138–145.
- Rode, K. D., et al. 2018. Den phenology and reproductive success of polar bears in a changing climate. Journal of Mammalogy 99: 16–26.
- Rogers, M. C., E. Peacock, K. Simac, M. B. O'Dell, and J. M. Welker. 2015. Diet of female polar bears in the southern Beaufort Sea of Alaska: evidence for an emerging alternative foraging strategy in response to environmental change. Polar Biology 38: 1035–1047.
- Schlaepfer, M. A., M. C. Runge, and P. W. Sherman. 2002. Ecological and evolutionary traps. Trends in Ecology and Evolution 17: 474–480.
- Schliebe, S., K. D. Rode, J. S. Gleason, J. Wilder, K. Proffitt, T. J. Evans, and S. Miller. 2008. Effects of sea ice extent and food availability on spatial and temporal distribution of polar bears during the fall open-water period in the southern Beaufort Sea. Polar Biology 31: 999–1010.
- Shepard, E. L. C., R. P. Wilson, W. G. Rees, E. Grundy, S. A. Lambertucci, and S. B. Vosper. 2013. Energy landscapes shape animal movement ecology. American Naturalist 182: 298–312.
- Sherley, R. B., K. Ludynia, B. M. Dyer, T. Lamont, A. B. Makhado, J. P. Roux, K. L. Scales, L. G. Underhill, and S. C. Votier. 2017. Metapopulation tracking juvenile penguins reveals an ecosystem-wide ecological trap. Current Biology 27: 563–568.
- Spiegelhalter, D. J., N. G. Best, B. P. Carlin, and A. van der Linde. 2002. Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 64: 583–639.
- Spreen, G., L. Kaleschke, and G. Heygster. 2008. Sea ice remote sensing using AMSR-E 89-GHz channels. Journal of Geophysical Research 113: C02S03.
- Stirling, I., and E. H. McEwan. 1975. The caloric value of whole ringed seals (Phoca hispida) in relation to polar bear (Ursus maritimus) ecology and hunting behavior. Canadian Journal of Zoology 53: 1021–1027.
- Stirling, I., and N. A. Øritsland. 1995. Relationships between estimates of ringed seal (Phoca hispida) and polar bear (Ursus maritimus) populations in the Canadian Arctic. Canadian Journal of Fisheries and Aquatic Sciences 52: 2594–2612.
- Stirling, I., C. Spencer, and D. Andriashek. 1989. Immobilization of polar bears (Ursus maritimus) with Telazol® in the Canadian Arctic. Journal of Wildlife Diseases 25: 159–168.
- Thiemann, G. W., A. E. Derocher, S. G. Cherry, N. J. Lunn, E. Peacock, and V. Sahanatien. 2013. Effects of chemical immobilization on the movement rates of free-ranging polar bears. Journal of Mammalogy 94: 386–397.
- Thomas, D. W., J. Blondel, P. Perret, M. M. Lambrechts, and J. R. Speakman. 2001. Energetic and fitness costs of mismatching resource supply and demand in seasonally breeding birds. Science 291: 2598–2600.
- Tuomainen, U., and U. Candolin. 2011. Behavioural responses to human-induced environmental change. Biological Reviews 86: 640–657.
- Wall, J., I. Douglas-Hamilton, and F. Vollrath. 2006. Elephants avoid costly mountaineering. Current Biology 16: 527–529.
- Ware, J. V., et al. 2017. Habitat degradation affects the summer activity of polar bears. Oecologia 184: 87–99.
- Whiteman, J. P., H. J. Harlow, G. M. Durner, E. V. Regehr, B. C. Rourke, M. Robles, S. C. Amstrup, and M. Ben-David. 2017a. Polar bears experience skeletal muscle atrophy in response to food deprivation and reduced activity in winter and summer. Conservation Physiology 5: cox049.
- Whiteman, J. P., H. J. Harlow, G. M. Durner, E. V. Regehr, S. C. Amstrup, and M. Ben-David. 2017b. Phenotypic plasticity and climate change: can polar bears respond to longer Arctic summers with an adaptive fast? Oecologia 186: 369–381.
- Whiteman, J. P., H. J. Harlow, G. M. Durner, E. V. Regehr, S. C. Amstrup, and M. Ben-David. 2019. Heightened immune system function in polar bears using terrestrial habitats. Physiological and Biochemical Zoology 92: 1–11.
- Wilder, J. M., D. Vongraven, T. Atwood, B. Hansen, A. Jessen, A. Kochnev, G. York, R. Vallender, D. Hedman, and M. Gibbons. 2017. Polar bear attacks on humans: Implications of a changing climate. Wildlife Society Bulletin 41: 537–547.
- Wilson, R. P., C. R. White, F. Quintana, L. G. Halsey, N. Liebsch, G. R. Martin, and P. J. Butler. 2006. Moving towards acceleration for estimates of activity-specific metabolic rate in free-living animals: the case of the cormorant. Journal of Animal Ecology 75: 1081–1090.
- Wilson, R. P., F. Quintana, and V. J. Hobson. 2012. Construction of energy landscapes can clarify the movement and distribution of foraging animals. Proceeding of the Royal Society B 279: 975–80.
- Wilson, R. R., E. V. Regehr, M. St, T. C. Martin, E. Atwood, S. Miller Peacock, and G. Divoky. 2017. Relative influences of climate change and human activity on the onshore distribution of polar bears. Biological Conservation 214: 288–294.
- de Winter, J. C. F. 2013. Using the Student's t-test with extremely small sample sizes. Practical Assessment, Research & Evaluation 18: 1–12.
- Worton, B. J.. 1995. Using Monte Carlo simulation to evaluate kernel-based home range estimators. Journal of Wildlife Management 59: 794–800.
- Zuur, A. F., E. N. Ieno, and C. S. Elphick. 2010. A protocol for data exploration to avoid common statistical problems. Methods in Ecology and Evolution 1: 3–14.