Estimating where and how animals travel: an optimal framework for path reconstruction from autocorrelated tracking data
Corresponding Editor: N. J. Gotelli.
Abstract
An animal's trajectory is a fundamental object of interest in movement ecology, as it directly informs a range of topics from resource selection to energy expenditure and behavioral states. Optimally inferring the mostly unobserved movement path and its dynamics from a limited sample of telemetry observations is a key unsolved problem, however. The field of geostatistics has focused significant attention on a mathematically analogous problem that has a statistically optimal solution coined after its inventor, Krige. Kriging revolutionized geostatistics and is now the gold standard for interpolating between a limited number of autocorrelated spatial point observations. Here we translate Kriging for use with animal movement data. Our Kriging formalism encompasses previous methods to estimate animal's trajectories—the Brownian bridge and continuous‐time correlated random walk library—as special cases, informs users as to when these previous methods are appropriate, and provides a more general method when they are not. We demonstrate the capabilities of Kriging on a case study with Mongolian gazelles where, compared to the Brownian bridge, Kriging with a more optimal model was 10% more precise in interpolating locations and 500% more precise in estimating occurrence areas.
Citing Literature
Number of times cited according to CrossRef: 13
- Guillaume Péron, Justin M. Calabrese, Olivier Duriez, Christen H. Fleming, Ruth García-Jiménez, Alison Johnston, Sergio A. Lambertucci, Kamran Safi, Emily L. C. Shepard, The challenges of estimating the distribution of flight heights from telemetry or altimetry data, Animal Biotelemetry, 10.1186/s40317-020-00194-z, 8, 1, (2020).
- Michael J. Noonan, Marlee A. Tucker, Christen H. Fleming, Thomas S. Akre, Susan C. Alberts, Abdullahi H. Ali, Jeanne Altmann, Pamela Castro Antunes, Jerrold L. Belant, Dean Beyer, Niels Blaum, Katrin Böhning‐Gaese, Laury Cullen, Rogerio Cunha Paula, Jasja Dekker, Jonathan Drescher‐Lehman, Nina Farwig, Claudia Fichtel, Christina Fischer, Adam T. Ford, Jacob R. Goheen, René Janssen, Florian Jeltsch, Matthew Kauffman, Peter M. Kappeler, Flávia Koch, Scott LaPoint, A. Catherine Markham, Emilia Patricia Medici, Ronaldo G. Morato, Ran Nathan, Luiz Gustavo R. Oliveira‐Santos, Kirk A. Olson, Bruce D. Patterson, Agustin Paviolo, Emiliano Esterci Ramalho, Sascha Rösner, Dana G. Schabo, Nuria Selva, Agnieszka Sergiel, Marina Xavier da Silva, Orr Spiegel, Peter Thompson, Wiebke Ullmann, Filip Zięba, Tomasz Zwijacz‐Kozica, William F. Fagan, Thomas Mueller, Justin M. Calabrese, A comprehensive analysis of autocorrelation and bias in home range estimation, Ecological Monographs, 10.1002/ecm.1344, 89, 2, (2019).
- Guillaume Péron, The time frame of home‐range studies: from function to utilization, Biological Reviews, 10.1111/brv.12545, 94, 6, (1974-1982), (2019).
- Théo Michelot, Pierre Gloaguen, Paul G. Blackwell, Marie‐Pierre Étienne, The Langevin diffusion as a continuous‐time model of animal movement and habitat selection, Methods in Ecology and Evolution, 10.1111/2041-210X.13275, 10, 11, (1894-1907), (2019).
- Ulrike E. Schlägel, Johannes Signer, Antje Herde, Sophie Eden, Florian Jeltsch, Jana A. Eccard, Melanie Dammhahn, Estimating interactions between individuals from concurrent animal movements, Methods in Ecology and Evolution, 10.1111/2041-210X.13235, 10, 8, (1234-1245), (2019).
- C. H. Fleming, D. Sheldon, W. F. Fagan, P. Leimgruber, T. Mueller, D. Nandintsetseg, M. J. Noonan, K. A. Olson, E. Setyawan, A. Sianipar, J. M. Calabrese, Correcting for missing and irregular data in home‐range estimation, Ecological Applications, 10.1002/eap.1704, 28, 4, (1003-1010), (2018).
- Tsubasa Hirakawa, Takayoshi Yamashita, Toru Tamaki, Hironobu Fujiyoshi, Yuta Umezu, Ichiro Takeuchi, Sakiko Matsumoto, Ken Yoda, Can AI predict animal movements? Filling gaps in animal trajectories using inverse reinforcement learning, Ecosphere, 10.1002/ecs2.2447, 9, 10, (2018).
- Christen H. Fleming, Daniel Sheldon, Eliezer Gurarie, William F. Fagan, Scott LaPoint, Justin M. Calabrese, Kálmán filters for continuous-time movement models, Ecological Informatics, 10.1016/j.ecoinf.2017.04.008, 40, (8-21), (2017).
- Brett T. McClintock, Joshua M. London, Michael F. Cameron, Peter L. Boveng, Bridging the gaps in animal movement: hidden behaviors and ecological relationships revealed by integrated data streams, Ecosphere, 10.1002/ecs2.1751, 8, 3, (2017).
- Henry Scharf, Mevin B. Hooten, Devin S. Johnson, Imputation Approaches for Animal Movement Modeling, Journal of Agricultural, Biological and Environmental Statistics, 10.1007/s13253-017-0294-5, 22, 3, (335-352), (2017).
- Johannes Signer, John Fieberg, Tal Avgar, Estimating utilization distributions from fitted step‐selection functions, Ecosphere, 10.1002/ecs2.1771, 8, 4, (2017).
- Holger Sennhenn-Reulen, Langhalima Diedhiou, Matthias Klapproth, Dietmar Zinner, Estimation of baboon daily travel distances by means of point sampling – the magnitude of underestimation, Primate Biology, 10.5194/pb-4-143-2017, 4, 2, (143-151), (2017).
- Justin M. Calabrese, Chris H. Fleming, Eliezer Gurarie, ctmm: an r package for analyzing animal relocation data as a continuous‐time stochastic process, Methods in Ecology and Evolution, 10.1111/2041-210X.12559, 7, 9, (1124-1132), (2016).





